It looks like you're new here. If you want to get involved, click one of these buttons!

- All Categories 1.6K
- Azimuth Code Project 107
- News and Information 340
- Chat 197
- Azimuth Blog 148
- Azimuth Forum 29
- Azimuth Project 189
- - Strategy 108
- - Conventions and Policies 21
- - Questions 43
- Azimuth Wiki 703
- - Latest Changes 695
- - - Action 14
- - - Biodiversity 8
- - - Books 1
- - - Carbon 9
- - - Computational methods 38
- - - Climate 52
- - - Earth science 22
- - - Ecology 43
- - - Energy 29
- - - Experiments 30
- - - Geoengineering 0
- - - Mathematical methods 69
- - - Meta 9
- - - Methodology 16
- - - Natural resources 7
- - - Oceans 4
- - - Organizations 34
- - - People 6
- - - Publishing 3
- - - Reports 3
- - - Software 20
- - - Statistical methods 2
- - - Sustainability 4
- - - Things to do 2
- - - Visualisation 1
- General 36

## Comments

Couple of more blog posts on nailing down the mechanism for ENSO:

(1)This one contextualizes the ENSO behavior in terms of a common forcing governing ENSO, QBO, and the Chandler wobblehttp://contextearth.com/2017/05/21/the-lunar-geophysical-connection/

Here are a few charts from the post:

What are the odds that the fundamental frequencies of all these behaviors are the same to that precision?

As it turns out NASA JPL were on this lunar-forcing path several years ago, but elected not to fund the proposed research and so the progress stalled.

(2)Yesterday's post provides a historical context. Essentially all the geophysics applicable to the model was known by 1920.http://contextearth.com/2017/05/30/ocean-dynamics-history/

Could have done a decent job in predicting ENSO evolution with Pacific Ocean SST data up to 1920

(3)Posted on the Azimuth blog.https://johncarlosbaez.wordpress.com/2017/04/24/complexity-theory-and-evolution-in-economics/#comment-92343

ENSO means zero in Japanese and also has a Zen interpretation

`Couple of more blog posts on nailing down the mechanism for ENSO: --- --- **(1)** This one contextualizes the ENSO behavior in terms of a common forcing governing ENSO, QBO, and the Chandler wobble http://contextearth.com/2017/05/21/the-lunar-geophysical-connection/ Here are a few charts from the post: ![cw](http://imagizer.imageshack.us/a/img922/9128/U1BKZz.png) ![qbo](http://imageshack.com/a/img922/7145/G5zhhx.png) ![enso](http://imageshack.com/a/img924/7921/4KVw6j.png) What are the odds that the fundamental frequencies of all these behaviors are the same to that precision? ![ensoprec](http://imagizer.imageshack.us/a/img922/5296/vUfioS.png) As it turns out NASA JPL were on this lunar-forcing path several years ago, but elected not to fund the proposed research and so the progress stalled. --- --- **(2)** Yesterday's post provides a historical context. Essentially all the geophysics applicable to the model was known by 1920. http://contextearth.com/2017/05/30/ocean-dynamics-history/ Could have done a decent job in predicting ENSO evolution with Pacific Ocean SST data up to 1920 ![predict](https://imageshack.com/i/pnfzYLXqp) --- --- **(3)** Posted on the Azimuth blog. https://johncarlosbaez.wordpress.com/2017/04/24/complexity-theory-and-evolution-in-economics/#comment-92343 ENSO means zero in Japanese and also has a Zen interpretation > “The ensō symbolizes absolute enlightenment, strength, elegance, the universe, and mu (the void).”`

Trump pulled US out of the Paris Accord :(

If we actually had better knowledge of climate behavior and more emphasis on how AGW interacts with Peak Oil, we would likely have a different discourse. Just by having a real understanding of ENSO, we could compensate out the natural variability in the global temperature signal. The almost monotonic increase in temperature would be much more obvious and we wouldn't have to contend with the uncertainty players such as Curry controlling the political discussion.

This ENSO model is looking more solid. With virtually no free parameters, any automated fit to an ENSO interval does a good job of recreating the unfitted intervals. http://contextearth.com/2017/05/31/enso-model-fit-1880-1980/

The common criticism of these kinds of models is that they overfit and can not be tested with historical data, as any contamination of a model with available data will then taint the model and give a false impression that it actually works. This model is different and works with minimal set of parameters, just the 2 tidal cycles and a seasonal cycle.

`Trump pulled US out of the Paris Accord :( If we actually had better knowledge of climate behavior and more emphasis on how AGW interacts with Peak Oil, we would likely have a different discourse. Just by having a real understanding of ENSO, we could compensate out the natural variability in the global temperature signal. The almost monotonic increase in temperature would be much more obvious and we wouldn't have to contend with the uncertainty players such as Curry controlling the political discussion. This ENSO model is looking more solid. With virtually no free parameters, any automated fit to an ENSO interval does a good job of recreating the unfitted intervals. http://contextearth.com/2017/05/31/enso-model-fit-1880-1980/ ![](http://imageshack.com/a/img923/1430/gIh5df.png) The common criticism of these kinds of models is that they overfit and can not be tested with historical data, as any contamination of a model with available data will then taint the model and give a false impression that it actually works. This model is different and works with minimal set of parameters, just the 2 tidal cycles and a seasonal cycle.`

Couple more blog posts that demonstrate how well the ENSO model works in describing the observations and the geophysics ...

The first is evidence as to how such a simple model can produce such a rich Fourier spectra, contrary to people's preconceived notions: http://contextearth.com/2017/06/02/enso-and-fourier-analysis/

The second is an untainted match between the lunar forcing used to model ENSO and the lunar forcing obtained from the earth's Length-of-day (LOD) data http://contextearth.com/2017/06/03/enso-forcing-validation-via-lod-data/

Have to look at Fig.6 in the post to see the match closely.

This is untainted because the LOD is completely out-of-band with the fitting data and so becomes a strong validation test for the model.

`Couple more blog posts that demonstrate how well the ENSO model works in describing the observations and the geophysics ... The first is evidence as to how such a simple model can produce such a rich Fourier spectra, contrary to people's preconceived notions: http://contextearth.com/2017/06/02/enso-and-fourier-analysis/ The second is an untainted match between the lunar forcing used to model ENSO and the lunar forcing obtained from the earth's Length-of-day (LOD) data http://contextearth.com/2017/06/03/enso-forcing-validation-via-lod-data/ Have to look at Fig.6 in the post to see the match closely. ![fit](http://imageshack.com/a/img924/1548/KteCZ3.png) This is untainted because the LOD is completely [out-of-band](https://en.wikipedia.org/wiki/Out-of-band) with the fitting data and so becomes a strong validation test for the model.`

ENSO forcing match against digitized LOD variation

I took the correlation coefficient of this and its above 0.7. For the cycle factors applied, the fit doesn't get much better if the phases and amplitude are allowed to vary -- the correlation coefficient go up by a slight 0.02, and it reduces the ENSO fit only slightly.

`ENSO forcing match against digitized LOD variation ![](http://imageshack.com/a/img924/2977/ii7X3w.png) I took the correlation coefficient of this and its above 0.7. For the cycle factors applied, the fit doesn't get much better if the phases and amplitude are allowed to vary -- the correlation coefficient go up by a slight 0.02, and it reduces the ENSO fit only slightly.`

From the above agreement in forcing stimulii.

(A)The forcing for QBO is mainly Draconic

(B)(C) ENSO and LOD have the same tidal forcing

`From the above agreement in forcing stimulii. (A)The forcing for QBO is mainly Draconic (B)(C) ENSO and LOD have the same tidal forcing ![flow](http://imageshack.com/a/img924/1999/Y7pEf2.png)`

Difficult to believe that behaviors such as ENSO and QBO are not related to external forcing. I can't think of one large scale cyclic behavior that can't be pinned to some other regular cycle. Even the cycles of sunspots are known to be intimately tied to the sun's rotation. So even though they haven't quite nailed the predictability of sunspots yet, they know it isn't some spontaneous oscillation as the purveyors of the wind-only mechanism for ENSO seem to think.

Thus, much like sunspots, ENSO is likely sensitive to variations in the Earth's rotation speed. As the moon is known to cause cyclic variations in the speed, these same variations should be able to be picked up in an ENSO wave equation model. And what do we find but that the two most critical lunar periods, the Draconic 27.2122 days and Anomalistic 27.5545 days feed into a best-fit model to within 1 minute each.

http://contextearth.com/2017/06/08/scaling-el-nino/

Got a reply tweet from Andrew Dessler concerning this and he said

"Climate is a physics problem, not a statistics one. Looking at correlations is interesting, but not sufficient. Must have physical basis."Some of these guys do not realize that science deals with this situation automatically. They should be able to eventually reject the lunar forcing by coming up with evidence that rejects it. It shouldn't be hard, as all they have to do is show that the ENSO cycles are incommensurate with the lunar cycles. And show how there is not enough energy supplied by the lunisolar cycles to move volumes of water in a reduced effective gravity environment. If they can't, however, then the lunar model will remain as a potential ENSO driver.

`Difficult to believe that behaviors such as ENSO and QBO are not related to external forcing. I can't think of one large scale cyclic behavior that can't be pinned to some other regular cycle. Even the cycles of sunspots are known to be intimately tied to the sun's rotation. So even though they haven't quite nailed the predictability of sunspots yet, they know it isn't some spontaneous oscillation as the purveyors of the wind-only mechanism for ENSO seem to think. Thus, much like sunspots, ENSO is likely sensitive to variations in the Earth's rotation speed. As the moon is known to cause cyclic variations in the speed, these same variations should be able to be picked up in an ENSO wave equation model. And what do we find but that the two most critical lunar periods, the Draconic 27.2122 days and Anomalistic 27.5545 days feed into a best-fit model to within 1 minute each. http://contextearth.com/2017/06/08/scaling-el-nino/ Got a reply tweet from Andrew Dessler concerning this and he said *"Climate is a physics problem, not a statistics one. Looking at correlations is interesting, but not sufficient. Must have physical basis."* Some of these guys do not realize that science deals with this situation automatically. They should be able to eventually reject the lunar forcing by coming up with evidence that rejects it. It shouldn't be hard, as all they have to do is show that the ENSO cycles are incommensurate with the lunar cycles. And show how there is not enough energy supplied by the lunisolar cycles to move volumes of water in a reduced effective gravity environment. If they can't, however, then the lunar model will remain as a potential ENSO driver.`

This is a magnification of the fitting contour around the best forcing period values for ENSO. These pair of peak values are each found to be less than a minute apart from the known values of the Draconic cycle (27.2122 days) and Anomalistic cycle (27.5545 days).

The forcing comes directly from the angular momentum variations in the Earth's rotation. The comparison between what the ENSO model uses (from the Draconic and Anomalistic terms above) and what is measured via monitoring the length-of-day (LOD) is shown below

The lower LOD pane is a fit over 3 years, which is about 40 lunar months. These essentially get aliased in the upper ENSO pane, which only responds to the peak tidal forces at a specific time of the year -- around Nov/Dec.

So many numbers have to align perfectly for this model to work out, and it looks like it does.

`This is a magnification of the fitting contour around the best forcing period values for ENSO. These pair of peak values are each found to be less than a minute apart from the known values of the Draconic cycle (27.2122 days) and Anomalistic cycle (27.5545 days). ![tidal](http://imageshack.com/a/img922/3818/QuW4FT.png) The forcing comes directly from the angular momentum variations in the Earth's rotation. The comparison between what the ENSO model uses (from the Draconic and Anomalistic terms above) and what is measured via monitoring the length-of-day (LOD) is shown below ![lod](http://imageshack.com/a/img922/6999/yC88BH.png) The lower LOD pane is a fit over 3 years, which is about 40 lunar months. These essentially get aliased in the upper ENSO pane, which only responds to the peak tidal forces at a specific time of the year -- around Nov/Dec. So many numbers have to align perfectly for this model to work out, and it looks like it does.`

This is the physics of the tidal forcing -- imparting a 1 millisecond slowdown (or speedup) on the rotation of the earth with a surface velocity of almost 500 meters/second over the course of a couple of weeks (a fortnight) will result in an inertial lateral movement of ~ 1/2 a meter in the volume of the Pacific ocean due to Newton's first law.

This does not seem like a big deal until you realize that the thermocline can absorb this inertial impulse as a vertical sloshing, since the effective gravity is reduced by orders of magnitude due to the slight density differences above and below the thermocline. This is reflected as an Atwood number and shows up in Rayleigh-Taylor instability experiments, e.g. SEE THIS PAPER

With an Atwood number less than 0.001 which is ~0.1% density differences in a stratified fluid, the 0.5 meter displacement that occurs over two weeks now occurs effectively over half an hour. That's just an elementary scaling exercise.

So intuitively, one has to ask the question of what would happen if the ocean was translated laterally by 1/2 a meter over the course of a 1/2 an hour? We know what happens with earthquakes in something as simple as a swimming pool

or as threatening as a tsunami. But this is much more subtle because we can't obviously see it, and why it has likely been overlooked as a driver of ENSO.

All that math modeling of ENSO described here works backwards to this point. The

actual forcingworking on the earth's rotation can lead to the response shown here, both in the dynamic sense of tracing the measured path and now in terms of a physical order-of-magnitude justification.`This is the physics of the tidal forcing -- imparting a 1 millisecond slowdown (or speedup) on the rotation of the earth with a surface velocity of almost 500 meters/second over the course of a couple of weeks (a fortnight) will result in an inertial lateral movement of ~ 1/2 a meter in the volume of the Pacific ocean due to Newton's first law. This does not seem like a big deal until you realize that the thermocline can absorb this inertial impulse as a vertical sloshing, since the effective gravity is reduced by orders of magnitude due to the slight density differences above and below the thermocline. This is reflected as an Atwood number and shows up in Rayleigh-Taylor instability experiments, e.g. [SEE THIS PAPER](http://rsta.royalsocietypublishing.org/content/roypta/368/1916/1663.full.pdf) With an Atwood number less than 0.001 which is ~0.1% density differences in a stratified fluid, the 0.5 meter displacement that occurs over two weeks now occurs effectively over half an hour. That's just an elementary scaling exercise. So intuitively, one has to ask the question of what would happen if the ocean was translated laterally by 1/2 a meter over the course of a 1/2 an hour? We know what happens with earthquakes in something as simple as a swimming pool https://youtu.be/27GMnYEWL0M or as threatening as a tsunami. But this is much more subtle because we can't obviously see it, and why it has likely been overlooked as a driver of ENSO. All that math modeling of ENSO described here works backwards to this point. The *actual forcing* working on the earth's rotation can lead to the response shown here, both in the dynamic sense of tracing the measured path and now in terms of a physical order-of-magnitude justification.`

The supposedly simplest "toy" models of ENSO that we describe on the Azimuth Project wiki page here http://www.azimuthproject.org/azimuth/show/ENSO are the ones that remarkably work the best to describe the actual dynamics. If the delayed action oscillator (minus the cubic term) is combined with a seasonally-modulated lunar forcing that's essentially all that is needed to train the model.

`The supposedly simplest "toy" models of ENSO that we describe on the Azimuth Project wiki page here http://www.azimuthproject.org/azimuth/show/ENSO are the ones that remarkably work the best to describe the actual dynamics. If the delayed action oscillator (minus the cubic term) is combined with a seasonally-modulated lunar forcing that's essentially all that is needed to train the model.`

My last comment:

Elaborated further here: http://contextearth.com/2017/06/23/ensoqbo-elevator-pitch/

`My last comment: > "The supposedly simplest "toy" models of ENSO that we describe on the Azimuth Project wiki page here http://www.azimuthproject.org/azimuth/show/ENSO are the ones that remarkably work the best to describe the actual dynamics. If the delayed action oscillator (minus the cubic term) is combined with a seasonally-modulated lunar forcing that's essentially all that is needed to train the model." Elaborated further here: http://contextearth.com/2017/06/23/ensoqbo-elevator-pitch/`

tweet

http://contextearth.com/2017/08/14/solar-eclipse-2017-what-else/

`tweet <blockquote class="twitter-tweet" data-lang="en"><p lang="en" dir="ltr">Because lunar & solar cycles so accurately known, we can predict <a href="https://twitter.com/hashtag/SolarEclipse2017?src=hash">#SolarEclipse2017</a> precisely. Same for <a href="https://twitter.com/hashtag/ENSO?src=hash">#ENSO</a> <a href="https://twitter.com/hashtag/ElNino?src=hash">#ElNino</a> <br> <a href="https://t.co/M8xJ3DwOso">https://t.co/M8xJ3DwOso</a></p>— Paul Pukite (@WHUT) <a href="https://twitter.com/WHUT/status/896857059366494208">August 13, 2017</a></blockquote> <script async src="//platform.twitter.com/widgets.js" charset="utf-8"></script> http://contextearth.com/2017/08/14/solar-eclipse-2017-what-else/`