It looks like you're new here. If you want to get involved, click one of these buttons!

- All Categories 2.2K
- Applied Category Theory Course 338
- Applied Category Theory Exercises 149
- Applied Category Theory Discussion Groups 48
- Applied Category Theory Formula Examples 15
- Chat 470
- Azimuth Code Project 107
- News and Information 145
- Azimuth Blog 148
- Azimuth Forum 29
- Azimuth Project 190
- - Strategy 109
- - Conventions and Policies 21
- - Questions 43
- Azimuth Wiki 707
- - Latest Changes 699
- - - Action 14
- - - Biodiversity 8
- - - Books 2
- - - Carbon 9
- - - Computational methods 38
- - - Climate 53
- - - Earth science 23
- - - Ecology 43
- - - Energy 29
- - - Experiments 30
- - - Geoengineering 0
- - - Mathematical methods 69
- - - Meta 9
- - - Methodology 16
- - - Natural resources 7
- - - Oceans 4
- - - Organizations 34
- - - People 6
- - - Publishing 4
- - - Reports 3
- - - Software 20
- - - Statistical methods 2
- - - Sustainability 4
- - - Things to do 2
- - - Visualisation 1
- General 38

Options

## Comments

I guess that making a dimer which is a counter-example to something as famous as Coulomb's law might have some interesting implications.

`I guess that making a dimer which is a counter-example to something as famous as Coulomb's law might have some interesting implications.`

Evidently the surrounding molecular binding is much stronger than the inner dimer repulsion, and it is locked in a metastable configuration. I can think of another well-known example of this behavior.

`Evidently the surrounding molecular binding is much stronger than the inner dimer repulsion, and it is locked in a metastable configuration. I can think of another well-known example of this behavior.`