It looks like you're new here. If you want to get involved, click one of these buttons!

- All Categories 2.3K
- Chat 496
- Study Groups 10
- Epidemiology 5
- Network Theory 2
- Leaf Modeling 1
- Review Sections 9
- MIT 2020: Programming with Categories 52
- MIT 2020: Lectures 21
- MIT 2020: Exercises 25
- MIT 2019: Applied Category Theory 339
- MIT 2019: Lectures 79
- MIT 2019: Exercises 149
- MIT 2019: Chat 50
- UCR ACT Seminar 4
- General 64
- Azimuth Code Project 110
- Statistical methods 2
- Drafts 1
- Math Syntax Demos 15
- Wiki - Latest Changes 2
- Strategy 111
- Azimuth Project 1.1K
- - Spam 1
- News and Information 147
- Azimuth Blog 149
- - Conventions and Policies 21
- - Questions 43
- Azimuth Wiki 707

## Comments

@Scott #50 – yes, because antisymmetry identifies any two elements in a cycle

`@Scott #50 – yes, because antisymmetry identifies any two elements in a cycle`

@Anindya #50: thanks.

`@Anindya #50: thanks.`

Scott: this is correct! And I'm pretty sure I've convinced Brendan and David to change their terminology so it matches the rest of the world's. They will keep updating their book, fixing mistakes we find... and I think I've managed to get them to make this change too.

`Scott: this is correct! And I'm pretty sure I've convinced Brendan and David to change their terminology so it matches the rest of the world's. They will keep updating their book, fixing mistakes we find... and I think I've managed to get them to make this change too.`

Thanks @Scott, your post is immensely clarifying and exactly the sort of thing I hoped for in studying "applied" category theory.

`Thanks [@Scott](https://forum.azimuthproject.org/profile/1894/Scott%20Finnie), your [post](https://forum.azimuthproject.org/discussion/comment/16340/#Comment_16340) is immensely clarifying and exactly the sort of thing I hoped for in studying "applied" category theory.`

I'm a bit confused by

Remark 1.24. Are Fong & Spivak just saying that what's normally called a "partially ordered set" will be referred to as a "skeletal poset"? It's a bit confusing that a partially ordered set is an extension of something thatsounds like"partially ordered set" in its name.`I'm a bit confused by _Remark 1.24_. Are Fong & Spivak just saying that what's normally called a "partially ordered set" will be referred to as a "skeletal poset"? It's a bit confusing that a partially ordered set is an extension of something that _sounds like_ "partially ordered set" in its name.`

Jared Davis - I've talked Fong and Spivak out of calling partially ordered sets "skeletal posets". Please download the latest copy of

Seven Sketches. The problem that's bothering you will be gone, and Remark 1.24 will be transformed into something more reasonable: a remark pointing out that a skeletal preorder is a poset.`Jared Davis - I've talked Fong and Spivak out of calling partially ordered sets "skeletal posets". Please [download the latest copy of _Seven Sketches_](http://math.mit.edu/~dspivak/teaching/sp18/7Sketches.pdf). The problem that's bothering you will be gone, and Remark 1.24 will be transformed into something more reasonable: a remark pointing out that a skeletal preorder is a poset.`