It looks like you're new here. If you want to get involved, click one of these buttons!
Check the two claims made in Proposition 1.53.
Proposition 1.53. For any preorder \( (P, \le_P ) \), the identity function is monotone.
If \( (Q, \le_Q ) \) and \( (R, \le_R) \) are preorders and \( f : P \rightarrow Q \) and \( g : Q \rightarrow R \) are monotone, then \( ( f .g) : P \rightarrow R \) is also monotone.
Comments
Let \(x_p\) and \(y_p\) be elements of \(P\) such that \(x_p\leq y_p\).
Since \(f\) is monotone, it maps to elements \(x_q\) and \(y_q\), where \(x_q\leq y_q\)
Monotone function \(g\) maps \(x_q\) and \(y_q\) to \(x_r\) and \(y_r\) such that \(x_r\leq y_r\)
Thus, \( ( f .g) : P \rightarrow R \) maps \(x_p\) and \(y_p\) to \(x_r\) and \(y_r\), since \(x_p\leq y_p\) and \(x_r\leq y_r\), \( ( f .g) \) is monotone
Let \\(x_p\\) and \\(y_p\\) be elements of \\(P\\) such that \\(x_p\leq y_p\\). Since \\(f\\) is monotone, it maps to elements \\(x_q\\) and \\(y_q\\), where \\(x_q\leq y_q\\) Monotone function \\(g\\) maps \\(x_q\\) and \\(y_q\\) to \\(x_r\\) and \\(y_r\\) such that \\(x_r\leq y_r\\) Thus, \\( ( f .g) : P \rightarrow R \\) maps \\(x_p\\) and \\(y_p\\) to \\(x_r\\) and \\(y_r\\), since \\(x_p\leq y_p\\) and \\(x_r\leq y_r\\), \\( ( f .g) \\) is monotone
Looks good, Deepak! Like 99.5% of mathematicians, I usually use the notation \(g \circ f\) or just \(gf\) for the composite of functions \(f : P \to Q\) and \(g : Q \to R\), but Fong and Spivak use \( (f.g) \), which has certain advantages.
Looks good, Deepak! Like 99.5% of mathematicians, I usually use the notation \\(g \circ f\\) or just \\(gf\\) for the composite of functions \\(f : P \to Q\\) and \\(g : Q \to R\\), but Fong and Spivak use \\( (f.g) \\), which has certain advantages.