It looks like you're new here. If you want to get involved, click one of these buttons!

- All Categories 2.3K
- Chat 499
- Study Groups 18
- Petri Nets 9
- Epidemiology 3
- Leaf Modeling 1
- Review Sections 9
- MIT 2020: Programming with Categories 51
- MIT 2020: Lectures 20
- MIT 2020: Exercises 25
- MIT 2019: Applied Category Theory 339
- MIT 2019: Lectures 79
- MIT 2019: Exercises 149
- MIT 2019: Chat 50
- UCR ACT Seminar 4
- General 67
- Azimuth Code Project 110
- Statistical methods 3
- Drafts 2
- Math Syntax Demos 15
- Wiki - Latest Changes 3
- Strategy 113
- Azimuth Project 1.1K
- - Spam 1
- News and Information 147
- Azimuth Blog 149
- - Conventions and Policies 21
- - Questions 43
- Azimuth Wiki 708

Options

There are five partitions possible on a set with three elements, say \( T = {12, 3, 4} \).

**Example 1.86**.
Let \( S = {1, 2, 3, 4} \), \( T = {12, 3, 4} \), and \( g: S \rightarrow T \) by \( g(1) = g(2) = 12 , g(3) = 3, \text{ and } g(4) = 4 \).

Using the same \( S \) and \( g: S \rightarrow T \) as in Example 1.76, determine the partition \( g^*(c) \) on \( S \) for each of the five partitions \( c: T \twoheadrightarrow P \).

## Comments

The partitions on \(T\) are

[1234],[12][34],[123][4],[124][3],[12][3][4].

The images of these partitions under \(g^*\) are

[1234],[12][34],[123][4],[124][3],[12][3][4]

where now \(1\) and \(2\) are distinct elements of \(S\), though they always appear in the pulled-back partitions together (because \(g\) maps them to the same element of \(T\)).

`The partitions on \\(T\\) are [1234],[12][34],[123][4],[124][3],[12][3][4]. The images of these partitions under \\(g^*\\) are [1234],[12][34],[123][4],[124][3],[12][3][4] where now \\(1\\) and \\(2\\) are distinct elements of \\(S\\), though they always appear in the pulled-back partitions together (because \\(g\\) maps them to the same element of \\(T\\)).`