It looks like you're new here. If you want to get involved, click one of these buttons!

- All Categories 2.3K
- Chat 499
- Study Groups 18
- Petri Nets 9
- Epidemiology 3
- Leaf Modeling 1
- Review Sections 9
- MIT 2020: Programming with Categories 51
- MIT 2020: Lectures 20
- MIT 2020: Exercises 25
- MIT 2019: Applied Category Theory 339
- MIT 2019: Lectures 79
- MIT 2019: Exercises 149
- MIT 2019: Chat 50
- UCR ACT Seminar 4
- General 67
- Azimuth Code Project 110
- Statistical methods 3
- Drafts 2
- Math Syntax Demos 15
- Wiki - Latest Changes 3
- Strategy 113
- Azimuth Project 1.1K
- - Spam 1
- News and Information 147
- Azimuth Blog 149
- - Conventions and Policies 21
- - Questions 43
- Azimuth Wiki 708

Options

Consider the preorder \( (P, \le ) \) with Hasse diagram \( \Big[ \text{ no } \le \text{ maybe } \le \text{ yes } \Big] \) .

We propose a monoidal structure with "yes" as the monoidal unit and "min" as the monoidal product.

1) Make sense of "min" by filling in the multiplication table with elements of P.

2) Check the axioms of Definition 2.2 hold for \( \mathbf{NMY} := (P, \le, \text{yes}, \text{min} ) \), given your definition of "min".

$$ \begin{array}{c|ccc} \text{min} & no & maybe & yes \\ \hline no & ? & ? & ? \\ maybe & ? & ? & ? \\ yes & ? & ? & ? \end{array} $$ Previous Next

## Comments

The multiplication table is

$$ \begin{array}{c|ccc} \text{min} & no & maybe & yes \\ \hline no & no & no & no \\ maybe & no & maybe & maybe \\ yes & no & maybe & yes \end{array} $$ The "min" operation is associative and commutative, so properties (c) and (d) of Definition 2.1 hold.

For any element \(x \in P, x \otimes yes = yes \otimes x = \min{(x, yes)} = x\), so the unit laws (b) also hold.

Suppose \(x_1\leq y_1, x_2\leq y_2\). Since \(P\) is a chain, we must have \(x_1\leq x_2\) and/or \(x_2\leq x_1\); consider the former case (the other case is dealt with similarly).

We need to show that \(x_1\leq y_1 \otimes y_2 =\min{(y_1, y_2)}\). This is true by assumption if \(y_1 =\min{(y_1, y_2)}\), so consider the case \(y_2 =\min{(y_1, y_2)}\).

We then have either \(x_1 \leq y_2\) or \(x_2 \leq y_2 < x_1 \leq y_1\). If the latter were true, then transitivity would imply \(x_2 < x_1 \) contrary to the assumption that \(x_1\leq x_2\). So we must have \(x_1 \leq y_2\). This establishes property (a) of Definition 2.1 and thus concludes the proof.

`The multiplication table is $$ \begin{array}{c|ccc} \text{min} & no & maybe & yes \\\\ \hline no & no & no & no \\\\ maybe & no & maybe & maybe \\\\ yes & no & maybe & yes \end{array} $$ The "min" operation is associative and commutative, so properties (c) and (d) of Definition 2.1 hold. For any element \\(x \in P, x \otimes yes = yes \otimes x = \min{(x, yes)} = x\\), so the unit laws (b) also hold. Suppose \\(x_1\leq y_1, x_2\leq y_2\\). Since \\(P\\) is a chain, we must have \\(x_1\leq x_2\\) and/or \\(x_2\leq x_1\\); consider the former case (the other case is dealt with similarly). We need to show that \\(x_1\leq y_1 \otimes y_2 =\min{(y_1, y_2)}\\). This is true by assumption if \\(y_1 =\min{(y_1, y_2)}\\), so consider the case \\(y_2 =\min{(y_1, y_2)}\\). We then have either \\(x_1 \leq y_2\\) or \\(x_2 \leq y_2 < x_1 \leq y_1\\). If the latter were true, then transitivity would imply \\(x_2 < x_1 \\) contrary to the assumption that \\(x_1\leq x_2\\). So we must have \\(x_1 \leq y_2\\). This establishes property (a) of Definition 2.1 and thus concludes the proof.`

It seems to be suggested that there's some logical connective correspondence for this

min(as in Example 2.10 and Exercise 2.11). Is that what question 2 means by "definition of min"? :-?`It seems to be suggested that there's some logical connective correspondence for this _min_ (as in Example 2.10 and Exercise 2.11). Is that what question 2 means by "definition of min"? :-?`