It looks like you're new here. If you want to get involved, click one of these buttons!

- All Categories 2.3K
- Chat 496
- Study Groups 10
- Epidemiology 5
- Network Theory 2
- Leaf Modeling 1
- Review Sections 9
- MIT 2020: Programming with Categories 52
- MIT 2020: Lectures 21
- MIT 2020: Exercises 25
- MIT 2019: Applied Category Theory 339
- MIT 2019: Lectures 79
- MIT 2019: Exercises 149
- MIT 2019: Chat 50
- UCR ACT Seminar 4
- General 64
- Azimuth Code Project 110
- Statistical methods 2
- Drafts 1
- Math Syntax Demos 15
- Wiki - Latest Changes 2
- Strategy 111
- Azimuth Project 1.1K
- - Spam 1
- News and Information 147
- Azimuth Blog 149
- - Conventions and Policies 21
- - Questions 43
- Azimuth Wiki 707

## Comments

Which book exactly?

Also, I don't see how you've managed to prove \(\textsf{NP} \subsetneq \textsf{2-EXP}\).

Maybe you want to use \(\textsf{EXP} \subsetneq \textsf{2-EXP}\)? What's the proof of that?

`> And as John's book explains on p.251, the complexity of reachability is at least doubly exponential. Doesn't this mean that reachability cannot be in NP? Which book exactly? Also, I don't see how you've managed to prove \\(\textsf{NP} \subsetneq \textsf{2-EXP}\\). Maybe you want to use \\(\textsf{EXP} \subsetneq \textsf{2-EXP}\\)? What's the proof of that?`

I was referring to p.251 of Quantum Techniques for Stochastic Mechanics, which states that any decision algorithm has a worst-case runtime that is at least doubly exponential. But now that I'm looking at it again, I see that that is a statement about Presburger arithmetic, not about the reachability problem for Petri nets. So I have to retract my claim, which was based on a too cursory reading---sorry!

`I was referring to p.251 of [Quantum Techniques for Stochastic Mechanics](https://arxiv.org/abs/1209.3632), which states that any decision algorithm has a worst-case runtime that is at least doubly exponential. But now that I'm looking at it again, I see that that is a statement about Presburger arithmetic, not about the reachability problem for Petri nets. So I have to retract my claim, which was based on a too cursory reading---sorry!`

I see other comments have appeared while I was writing mine. Let me still post it.

Tobias wrote:

No, I said that the complexity of deciding the validity of statements in Presburger arithmetic is at least doubly exponential. This is an axiom system for arithmetic that mentions addition and multiplication only. Unlike Peano arithmetic, it's decidable.

The situation for Petri net reachability is much less well understood. In 1976, Roger Lipton showed that its complexity is at least exponential. More precisely, he showed the for any \(c > 0\) the worst-case run-time for deciding Petri net reachability exceeds \(2^{cn}\) where \(n\) is the size of the problem.

However, the best known

upperbound for the complexity is much worse. In 1981 Ernst Meyr found an algorithm that decides Petri net reachability. But its runtime grows faster than every primitive recursive function! For example, faster than this series$$ 1, 2^2, 2^{2^2}, 2^{2^{2^2}}, \dots $$ but in fact much faster than that.

There's a tantalizing connection between Presburger arithmetic and Petri net reachability, discussed in my book, but it hasn't (yet) sufficed to get a doubly exponential algorithm for Petri net reachability.

`I see other comments have appeared while I was writing mine. Let me still post it. Tobias wrote: > And as John's book explains on p.251, the complexity of reachability is at least doubly exponential. No, I said that the complexity of deciding the validity of statements in Presburger arithmetic is at least doubly exponential. This is an axiom system for arithmetic that mentions addition and multiplication only. Unlike Peano arithmetic, it's decidable. The situation for Petri net reachability is much less well understood. In 1976, [Roger Lipton showed that its complexity is at least exponential](http://www.cs.yale.edu/publications/techreports/tr63.pdf). More precisely, he showed the for any \\(c > 0\\) the worst-case run-time for deciding Petri net reachability exceeds \\(2^{cn}\\) where \\(n\\) is the size of the problem. However, the best known _upper_ bound for the complexity is much worse. In 1981 Ernst Meyr found an algorithm that decides Petri net reachability. But its runtime grows faster than every primitive recursive function! For example, faster than this series $$ 1, 2^2, 2^{2^2}, 2^{2^{2^2}}, \dots $$ but in fact much faster than that. There's a tantalizing connection between Presburger arithmetic and Petri net reachability, discussed in my book, but it hasn't (yet) sufficed to get a doubly exponential algorithm for Petri net reachability.`

@John

It's worse than that - the proof regards

space, nottime. That paper establishes you need at least \(\mathcal{O}(2^{n})\) memory to solve the reachability problem. Since you can't writing to all that memory demands the algorithm take the time to do it, italsoentails the algorithm is in \(\textsf{EXP-TIME}\).@Tobias

The same Roger Lipton cited above cowrote another paper in 1976 establishing that any \(\textsf{EXP-SPACE}\) algorithm can be expressed as a Petri net reachability problem.

I used this to argue \(\textsf{NP} \subsetneq \textsf{PETRI-REACH}\) in comment #41 in this thread. I had a few false starts with this - do you think this argument is adequate?

`@John > The situation for Petri net reachability is much less well understood. In 1976, [Roger Lipton showed that its complexity is at least exponential](http://www.cs.yale.edu/publications/techreports/tr63.pdf). More precisely, he showed the for any \\(c > 0\\) the worst-case run-time for deciding Petri net reachability exceeds \\(2^{cn}\\) where \\(n\\) is the size of the problem. It's worse than that - the proof regards *space*, not *time*. That paper establishes you need at least \\(\mathcal{O}(2^{n})\\) memory to solve the reachability problem. Since you can't writing to all that memory demands the algorithm take the time to do it, it *also* entails the algorithm is in \\(\textsf{EXP-TIME}\\). @Tobias The same Roger Lipton cited above cowrote another paper in 1976 establishing that any \\(\textsf{EXP-SPACE}\\) algorithm can be expressed as a Petri net reachability problem. I used this to argue \\(\textsf{NP} \subsetneq \textsf{PETRI-REACH}\\) in [comment #41](https://forum.azimuthproject.org/discussion/comment/17886/#Comment_17886) in this thread. I had a few false starts with this - do you think this argument is adequate?`

@Matthew: I haven't been able to access the Cardoza et al paper that you've been referring to, but otherwise I agree with your earlier argument. Very nice!

`@Matthew: I haven't been able to access the Cardoza et al paper that you've been referring to, but otherwise I agree with your earlier argument. Very nice!`

Feel free to shoot me a line on the gitter I set up and I can send the paper if you want.

`Feel free to shoot me a line on the [gitter](https://gitter.im/Applied-Category-Theory-Course/Lobby) I set up and I can send the paper if you want.`