#### Howdy, Stranger!

It looks like you're new here. If you want to get involved, click one of these buttons!

Options

# Exercise 100 - Chapter 2

edited June 2018
1. Write down the matrix $$M_X$$ , for $$X$$ as in Eq. (2.53).

2. Calculate $$M_X^2, M_X^3, M_X^4$$. Check that $$M_X^4$$ is what you got for the distance matrix in Exercise 2.55.

1. $\begin{array}{c|cccc} M_X&A&B&C&D\\ \hline A&0&2&\infty&\infty\\ B&\infty&0&3&\infty\\ C&3&\infty&0&6\\ D&\infty&5&\infty&0\end{array}$
2. $\begin{array}{c|cccc} M_X^2&A&B&C&D\\ \hline A&0&2&5&\infty\\ B&6&0&3&9\\ C&3&5&0&6\\ D&\infty&5&8&0\end{array}$ $\begin{array}{c|cccc} M_X^3&A&B&C&D\\ \hline A&0&2&5&11\\ B&6&0&3&9\\ C&3&5&0&6\\ D&11&5&8&0\end{array}$ $\begin{array}{c|cccc} M_X^4&A&B&C&D\\ \hline A&0&2&5&11\\ B&6&0&3&9\\ C&3&5&0&6\\ D&11&5&8&0\end{array}$
Comment Source:1. \$\begin{array}{c|cccc} M_X&A&B&C&D\\\\ \hline A&0&2&\infty&\infty\\\\ B&\infty&0&3&\infty\\\\ C&3&\infty&0&6\\\\ D&\infty&5&\infty&0\end{array}\$ 2. \$\begin{array}{c|cccc} M_X^2&A&B&C&D\\\\ \hline A&0&2&5&\infty\\\\ B&6&0&3&9\\\\ C&3&5&0&6\\\\ D&\infty&5&8&0\end{array}\$ \$\begin{array}{c|cccc} M_X^3&A&B&C&D\\\\ \hline A&0&2&5&11\\\\ B&6&0&3&9\\\\ C&3&5&0&6\\\\ D&11&5&8&0\end{array}\$ \$\begin{array}{c|cccc} M_X^4&A&B&C&D\\\\ \hline A&0&2&5&11\\\\ B&6&0&3&9\\\\ C&3&5&0&6\\\\ D&11&5&8&0\end{array}\$ Which agrees with the matrix constructed in exercise 2.55 (transposed, since we chose opposite conventions for which side represents the start and which represents the end of the journey).