Options

Forum MathJax Examples

This discussion group is a place to put examples for producing nicely formatted examples. It is mostly LaTeX but with some idiosyncrasies associated with the Wiki formatting.

This extends the instructions found in the guide.

Comments

  • 1.
    edited May 2018

    No font: $$ ABCDEFGHIJKLMNOPQRSTUVWXYZ \\\\ abcdefghijklmnopqrstuvwxyz $$ Math Boldface \mathbf{ } $$ \mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \\\\ \mathbf{abcdefghijklmnopqrstuvwxyz} $$ Math Italic \mathit{ } $$ \mathit{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \\\\ \mathit{abcdefghijklmnopqrstuvwxyz} $$ Math Roman \mathrm{ } $$ \mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \\\\ \mathrm{abcdefghijklmnopqrstuvwxyz} $$ Math Fraktur \mathfrak{ } $$ \mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \\\\ \mathfrak{abcdefghijklmnopqrstuvwxyz} $$ Math Caligraphic \mathcal{ } $$ \mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \\\\ \mathcal{abcdefghijklmnopqrstuvwxyz} $$ Math Script \mathscr{ } $$ \mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \\\\ \mathscr{abcdefghijklmnopqrstuvwxyz} $$ Math Blackboard Bold \mathbb{ } $$ \mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \\\\ \mathbb{abcdefghijklmnopqrstuvwxyz} $$

    Comment Source:No font: $$ ABCDEFGHIJKLMNOPQRSTUVWXYZ \\\\ abcdefghijklmnopqrstuvwxyz $$ Math Boldface `\mathbf{ }` $$ \mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \\\\ \mathbf{abcdefghijklmnopqrstuvwxyz} $$ Math Italic `\mathit{ }` $$ \mathit{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \\\\ \mathit{abcdefghijklmnopqrstuvwxyz} $$ Math Roman `\mathrm{ }` $$ \mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \\\\ \mathrm{abcdefghijklmnopqrstuvwxyz} $$ Math Fraktur `\mathfrak{ }` $$ \mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \\\\ \mathfrak{abcdefghijklmnopqrstuvwxyz} $$ Math Caligraphic `\mathcal{ }` $$ \mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \\\\ \mathcal{abcdefghijklmnopqrstuvwxyz} $$ Math Script `\mathscr{ }` $$ \mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \\\\ \mathscr{abcdefghijklmnopqrstuvwxyz} $$ Math Blackboard Bold `\mathbb{ }` $$ \mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \\\\ \mathbb{abcdefghijklmnopqrstuvwxyz} $$
  • 2.
    edited May 2018

    No text $$ the quick brown fox jumped over the lazy dog. \\\\ THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG! $$ Plain text \text{ } $$ \text{the quick brown fox jumped over the brown dog.} \\\\ \text{THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG!} $$ Text Boldface \textbf{ } $$ \textbf{the quick brown fox jumped over the lazy dog.} \\\\ \textbf{THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG!} $$ Text Italic \textit{ } $$ \textit{the quick brown fox jumped over the lazy dog.} \\\\ \textit{THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG!} $$ Text Roman \textrm{ } $$ \textrm{the quick brown fox jumped over the lazy dog.} \\\\ \textrm{THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG!} $$ Text Typewritter \texttt{ } $$ \texttt{the quick brown fox jumped over the lazy dog.} \\\\ \texttt{THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG!} $$

    Comment Source:No text $$ the quick brown fox jumped over the lazy dog. \\\\ THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG! $$ Plain text `\text{ }` $$ \text{the quick brown fox jumped over the brown dog.} \\\\ \text{THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG!} $$ Text Boldface `\textbf{ }` $$ \textbf{the quick brown fox jumped over the lazy dog.} \\\\ \textbf{THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG!} $$ Text Italic `\textit{ }` $$ \textit{the quick brown fox jumped over the lazy dog.} \\\\ \textit{THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG!} $$ Text Roman `\textrm{ }` $$ \textrm{the quick brown fox jumped over the lazy dog.} \\\\ \textrm{THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG!} $$ Text Typewritter `\texttt{ }` $$ \texttt{the quick brown fox jumped over the lazy dog.} \\\\ \texttt{THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG!} $$
  • 3.

    I can't imagine a more "illiterate" ignorance of cognitive ergonomics than uppercase Fraktur, notwithstanding who designed it. And squiggle merchants still wonder why people are repelled by mathematics texts! :).

    Comment Source:I can't imagine a more "illiterate" ignorance of cognitive ergonomics than uppercase Fraktur, notwithstanding who designed it. And squiggle merchants still wonder why people are repelled by mathematics texts! :).
  • 4.

    Still a better font than comic sans. :D

    Comment Source:Still a better font than comic sans. :D
  • 5.
    edited May 2018

    This discussion is limited by the lack of names on the comments. I thing a new "Category" maybe call it 'Applied Category Theory Samples' to go along with 'Applied Category Theory Course' and 'Applied Category Theory Exercises'.

    There have been a number of cases where I figure out how to do something write the result and then forget where it was.

    Here are some sample titles.

    • '7 Sketches Problem' description
    • '7 Sketches Problem' comment
    • A proof with labelled statements
    • ports of these examples
    • How to include a diagram: Google Diagrams
    • How to include a diagram: Adobe Illustrator

    https://forum.azimuthproject.org/discussion/1885

    Comment Source:This discussion is limited by the lack of names on the comments. I thing a new "Category" maybe call it '**Applied Category Theory Samples**' to go along with 'Applied Category Theory Course' and 'Applied Category Theory Exercises'. There have been a number of cases where I figure out how to do something write the result and then forget where it was. Here are some sample titles. - '7 Sketches Problem' description - '7 Sketches Problem' comment - A proof with labelled statements - [ports of these examples](https://math.meta.stackexchange.com/questions/5020/mathjax-basic-tutorial-and-quick-reference) - How to include a diagram: Google Diagrams - How to include a diagram: Adobe Illustrator https://forum.azimuthproject.org/discussion/1885
  • 6.
    edited May 2018

    Good idea. I just created a category called Applied Category Theory Formula Examples. Thanks Fredrick.

    Comment Source:Good idea. I just created a category called Applied Category Theory Formula Examples. Thanks Fredrick.
  • 7.
    edited May 2018

    Some commuting diagrams.

    A commuting "line" (aka a morphism)

    X \overset{f}{\rightarrow}Y $$ X \overset{f}{\rightarrow}Y $$ A commuting "triangle"

    \begin{matrix} X & \overset{f}{\rightarrow } &Y \\ id_x \downarrow & & \downarrow h\\ X &\underset{g}{\rightarrow} &Z \end{matrix} $$ \begin{matrix} X & \overset{f}{\rightarrow } &Y \\ id_x \downarrow & & \downarrow h\\ X &\underset{g}{\rightarrow} &Z \end{matrix} $$ A commuting square

    \begin{matrix} X & \overset{f}{\rightarrow } &W \\ e \downarrow & & \downarrow h\\ Y &\underset{g}{\rightarrow} &Z \end{matrix} $$ \begin{matrix} X & \overset{f}{\rightarrow } &W \\ e \downarrow & & \downarrow h\\ Y &\underset{g}{\rightarrow} &Z \end{matrix} $$ A commuting "pentagon"

    \begin{matrix} X & \overset{f}{\rightarrow }& S & \overset{l}{\rightarrow } &W \\ id_x \downarrow & & & & \downarrow h\\ X &\underset{g}{\rightarrow}&T&\underset{k}{\rightarrow} &Z \end{matrix} $$ \begin{matrix} X & \overset{f}{\rightarrow }& S & \overset{l}{\rightarrow } &W \\ id_x \downarrow & & & & \downarrow h\\ X &\underset{g}{\rightarrow}&T&\underset{k}{\rightarrow} &Z \end{matrix} $$ A commuting "hexagon"

    \begin{matrix} X & \overset{f}{\rightarrow }& S & \overset{l}{\rightarrow } &W \\ e \downarrow & & & & \downarrow h\\ Y &\underset{g}{\rightarrow}&T&\underset{k}{\rightarrow} &Z \end{matrix} $$ \begin{matrix} X & \overset{f}{\rightarrow }& S & \overset{l}{\rightarrow } &W \\ e \downarrow & & & & \downarrow h\\ Y &\underset{g}{\rightarrow}&T&\underset{k}{\rightarrow} &Z \end{matrix} $$ A commuting "\((2n+1)-\)gon"

    \begin{matrix} X & \overset{f}{\rightarrow }& S & \overset{l}{\rightarrow }&R&\overset{\cdots}{\rightarrow }&W \\ id_x \downarrow & & & & & & \downarrow h\\ X &\underset{g}{\rightarrow}&T&\underset{k}{\rightarrow}&Q&\underset{\cdots}{\rightarrow} &Z \end{matrix} $$ \begin{matrix} X & \overset{f}{\rightarrow }& S & \overset{l}{\rightarrow }&R&\overset{\cdots}{\rightarrow }&W \\ id_x \downarrow & & & & & & \downarrow h\\ X &\underset{g}{\rightarrow}&T&\underset{k}{\rightarrow}&Q&\underset{\cdots}{\rightarrow} &Z \end{matrix} $$ A commuting "\((2n)-\)gon"

    \begin{matrix} X & \overset{f}{\rightarrow }& S & \overset{l}{\rightarrow }&R&\overset{\cdots}{\rightarrow }&W \\ e \downarrow & & & & & & \downarrow h\\ Y &\underset{g}{\rightarrow}&T&\underset{k}{\rightarrow}&Q&\underset{\cdots}{\rightarrow} &Z \end{matrix} $$ \begin{matrix} X & \overset{f}{\rightarrow }& S & \overset{l}{\rightarrow }&R&\overset{\cdots}{\rightarrow }&W \\ e \downarrow & & & & & & \downarrow h\\ Y &\underset{g}{\rightarrow}&T&\underset{k}{\rightarrow}&Q&\underset{\cdots}{\rightarrow} &Z \end{matrix} $$

    Comment Source:Some commuting diagrams. A commuting "line" (aka a morphism) `X \overset{f}{\rightarrow}Y` $$ X \overset{f}{\rightarrow}Y $$ A commuting "triangle" `\begin{matrix} X & \overset{f}{\rightarrow } &Y \\ id_x \downarrow & & \downarrow h\\ X &\underset{g}{\rightarrow} &Z \end{matrix}` $$ \begin{matrix} X & \overset{f}{\rightarrow } &Y \\ id_x \downarrow & & \downarrow h\\ X &\underset{g}{\rightarrow} &Z \end{matrix} $$ A commuting square `\begin{matrix} X & \overset{f}{\rightarrow } &W \\ e \downarrow & & \downarrow h\\ Y &\underset{g}{\rightarrow} &Z \end{matrix}` $$ \begin{matrix} X & \overset{f}{\rightarrow } &W \\ e \downarrow & & \downarrow h\\ Y &\underset{g}{\rightarrow} &Z \end{matrix} $$ A commuting "pentagon" `\begin{matrix} X & \overset{f}{\rightarrow }& S & \overset{l}{\rightarrow } &W \\ id_x \downarrow & & & & \downarrow h\\ X &\underset{g}{\rightarrow}&T&\underset{k}{\rightarrow} &Z \end{matrix}` $$ \begin{matrix} X & \overset{f}{\rightarrow }& S & \overset{l}{\rightarrow } &W \\ id_x \downarrow & & & & \downarrow h\\ X &\underset{g}{\rightarrow}&T&\underset{k}{\rightarrow} &Z \end{matrix} $$ A commuting "hexagon" `\begin{matrix} X & \overset{f}{\rightarrow }& S & \overset{l}{\rightarrow } &W \\ e \downarrow & & & & \downarrow h\\ Y &\underset{g}{\rightarrow}&T&\underset{k}{\rightarrow} &Z \end{matrix}` $$ \begin{matrix} X & \overset{f}{\rightarrow }& S & \overset{l}{\rightarrow } &W \\ e \downarrow & & & & \downarrow h\\ Y &\underset{g}{\rightarrow}&T&\underset{k}{\rightarrow} &Z \end{matrix} $$ A commuting "\\((2n+1)-\\)gon" `\begin{matrix} X & \overset{f}{\rightarrow }& S & \overset{l}{\rightarrow }&R&\overset{\cdots}{\rightarrow }&W \\ id_x \downarrow & & & & & & \downarrow h\\ X &\underset{g}{\rightarrow}&T&\underset{k}{\rightarrow}&Q&\underset{\cdots}{\rightarrow} &Z \end{matrix}` $$ \begin{matrix} X & \overset{f}{\rightarrow }& S & \overset{l}{\rightarrow }&R&\overset{\cdots}{\rightarrow }&W \\ id_x \downarrow & & & & & & \downarrow h\\ X &\underset{g}{\rightarrow}&T&\underset{k}{\rightarrow}&Q&\underset{\cdots}{\rightarrow} &Z \end{matrix} $$ A commuting "\\((2n)-\\)gon" `\begin{matrix} X & \overset{f}{\rightarrow }& S & \overset{l}{\rightarrow }&R&\overset{\cdots}{\rightarrow }&W \\ e \downarrow & & & & & & \downarrow h\\ Y &\underset{g}{\rightarrow}&T&\underset{k}{\rightarrow}&Q&\underset{\cdots}{\rightarrow} &Z \end{matrix}` $$ \begin{matrix} X & \overset{f}{\rightarrow }& S & \overset{l}{\rightarrow }&R&\overset{\cdots}{\rightarrow }&W \\ e \downarrow & & & & & & \downarrow h\\ Y &\underset{g}{\rightarrow}&T&\underset{k}{\rightarrow}&Q&\underset{\cdots}{\rightarrow} &Z \end{matrix} $$
  • 8.
    Comment Source:@KeithEPeterson Could you copy your examples over to the https://forum.azimuthproject.org/categories/applied-category-theory-formula-examples
  • 9.

    Done!

    Comment Source:Done!
Sign In or Register to comment.