It looks like you're new here. If you want to get involved, click one of these buttons!

- All Categories 2.2K
- Programming with Categories Course 21
- Exercises - Programming with Categories Course 15
- Applied Category Theory Course 341
- Applied Category Theory Seminar 4
- Exercises - Applied Category Theory Course 149
- Discussion Groups 50
- How to Use MathJax 15
- Chat 487
- Azimuth Code Project 108
- News and Information 147
- Azimuth Blog 149
- Azimuth Forum 29
- Azimuth Project 189
- - Strategy 108
- - Conventions and Policies 21
- - Questions 43
- Azimuth Wiki 711
- - Latest Changes 701
- - - Action 14
- - - Biodiversity 8
- - - Books 2
- - - Carbon 9
- - - Computational methods 38
- - - Climate 53
- - - Earth science 23
- - - Ecology 43
- - - Energy 29
- - - Experiments 30
- - - Geoengineering 0
- - - Mathematical methods 69
- - - Meta 9
- - - Methodology 16
- - - Natural resources 7
- - - Oceans 4
- - - Organizations 34
- - - People 6
- - - Publishing 4
- - - Reports 3
- - - Software 21
- - - Statistical methods 2
- - - Sustainability 4
- - - Things to do 2
- - - Visualisation 1
- General 41

Options

Let’s make some definitions, based on the pattern in the previous exercise:

1) What is the category **1**? That is, what are its objects and morphisms?

2) What is the category **0**?

3) What is the formula for the number of morphisms in **n** for arbitrary \(n \in \mathbb{N} \) ?

## Comments

The Category \(\mathbf{1}\) has one object 0, and one arrow \(id_0)\).

`The Category \\(\mathbf{1}\\) has one object 0, and one arrow \\(id_0)\\).`

2)

0is the category with no objects or morphisms (i.e., both sets are \(\emptyset\).3) Claim: There are \(\frac{n(n+1)}{2}\) morphisms in

nfor all \(n\in\mathbb{N}\). Proof: For every two objects, say \(p>q\), innthere is exactly one one morphism, that obtained from the compositions \(f_{p-1}\circ f_{p-2}\circ\cdots\circ f_{q+1}\circ f_q\). By definition ofn, these constitute all of the non-identity morphisms inn. So, there are \(\binom{n}{2}=\frac{n(n-1)}{2}\) non-identity morphisms and \(n\) identity morphisms, for a total of \(\frac{n(n+1)}{2}\) morphisms.`2) **0** is the category with no objects or morphisms (i.e., both sets are \\(\emptyset\\). 3) Claim: There are \\(\frac{n(n+1)}{2}\\) morphisms in **n** for all \\(n\in\mathbb{N}\\). Proof: For every two objects, say \\(p>q\\), in **n** there is exactly one one morphism, that obtained from the compositions \\(f_{p-1}\circ f_{p-2}\circ\cdots\circ f_{q+1}\circ f_q\\). By definition of **n**, these constitute all of the non-identity morphisms in **n**. So, there are \\(\binom{n}{2}=\frac{n(n-1)}{2}\\) non-identity morphisms and \\(n\\) identity morphisms, for a total of \\(\frac{n(n+1)}{2}\\) morphisms.`

3) The recursive function is $$ f(n)= \begin{cases} 0, & \text{if $x \le 0$}.\\\\ f(n-1) + n, & \text{otherwise}. \end{cases} $$ The new element has a morphism to each of its predecessors \(n - 1\) and one to itself. Which is equivalent to $$ f(n) = \frac{n(n+1)}{2} = \frac{[n-1]([n-1]+1)}{2} + n $$

`3) The recursive function is \[ f(n)= \begin{cases} 0, & \text{if $x \le 0$}.\\\\ f(n-1) + n, & \text{otherwise}. \end{cases} \] The new element has a morphism to each of its predecessors \\(n - 1\\) and one to itself. Which is [equivalent to](https://forum.azimuthproject.org/discussion/comment/18665/#Comment_18665) \[ f(n) = \frac{n(n+1)}{2} = \frac{[n-1]([n-1]+1)}{2} + n \]`