It looks like you're new here. If you want to get involved, click one of these buttons!

- All Categories 2.3K
- Chat 500
- Study Groups 20
- Petri Nets 9
- Epidemiology 4
- Leaf Modeling 2
- Review Sections 9
- MIT 2020: Programming with Categories 51
- MIT 2020: Lectures 20
- MIT 2020: Exercises 25
- MIT 2019: Applied Category Theory 339
- MIT 2019: Lectures 79
- MIT 2019: Exercises 149
- MIT 2019: Chat 50
- UCR ACT Seminar 4
- General 69
- Azimuth Code Project 110
- Statistical methods 4
- Drafts 5
- Math Syntax Demos 15
- Wiki - Latest Changes 3
- Strategy 113
- Azimuth Project 1.1K
- - Spam 1
- News and Information 148
- Azimuth Blog 149
- - Conventions and Policies 21
- - Questions 43
- Azimuth Wiki 714

Options

## Comments

The preorder reflection of a category identifies all morphisms with the same source and target. It follows that any monoid (i.e., category with one object), is taken to the trivial preorder (the preorder with one element) under preorder reflection. So, in particular, \(\mathbb{N}\) has the trivial preorder as its preorder reflection.

`The preorder reflection of a category identifies all morphisms with the same source and target. It follows that any monoid (i.e., category with one object), is taken to the trivial preorder (the preorder with one element) under preorder reflection. So, in particular, \\(\mathbb{N}\\) has the trivial preorder as its preorder reflection.`