It looks like you're new here. If you want to get involved, click one of these buttons!

- All Categories 2.3K
- Chat 493
- ACT Study Group 5
- Azimuth Math Review 6
- MIT 2020: Programming with Categories 53
- MIT 2020: Lectures 21
- MIT 2020: Exercises 25
- MIT 2019: Applied Category Theory 138
- MIT 2019: Exercises 149
- MIT 2019: Chat 50
- UCR ACT Seminar 4
- General 64
- Azimuth Code Project 110
- Drafts 1
- Math Syntax Demos 15
- Wiki - Latest Changes 1
- Strategy 110
- Azimuth Project 1.1K

Options

## Comments

Per the definition of isomorphism, it is sufficient to find a morphism \(g\in\mathcal{C}(c,c)\)) such that \(g\circ\text{id}_c=\text{id}_c\) and \(\text{id}_c\circ g=\text{id}_c\). For any object in any category, the identity morphism is guaranteed to exist and \(\text{id}_c\circ\text{id}_c=\text{id}_c\). So, \(\text{id}_c\) is an isomorphism with inverse given by \(\text{id}_c\).

`Per the definition of isomorphism, it is sufficient to find a morphism \\(g\in\mathcal{C}(c,c)\\)) such that \\(g\circ\text{id}_c=\text{id}_c\\) and \\(\text{id}_c\circ g=\text{id}_c\\). For any object in any category, the identity morphism is guaranteed to exist and \\(\text{id}_c\circ\text{id}_c=\text{id}_c\\). So, \\(\text{id}_c\\) is an isomorphism with inverse given by \\(\text{id}_c\\).`