It looks like you're new here. If you want to get involved, click one of these buttons!

- All Categories 2.4K
- Chat 505
- Study Groups 21
- Petri Nets 9
- Epidemiology 4
- Leaf Modeling 2
- Review Sections 9
- MIT 2020: Programming with Categories 51
- MIT 2020: Lectures 20
- MIT 2020: Exercises 25
- Baez ACT 2019: Online Course 339
- Baez ACT 2019: Lectures 79
- Baez ACT 2019: Exercises 149
- Baez ACT 2019: Chat 50
- UCR ACT Seminar 4
- General 75
- Azimuth Code Project 111
- Statistical methods 4
- Drafts 10
- Math Syntax Demos 15
- Wiki - Latest Changes 3
- Strategy 113
- Azimuth Project 1.1K
- - Spam 1
- News and Information 148
- Azimuth Blog 149
- - Conventions and Policies 21
- - Questions 43
- Azimuth Wiki 718

Options

## Comments

Per the definition of isomorphism, it is sufficient to find a morphism \(g\in\mathcal{C}(c,c)\)) such that \(g\circ\text{id}_c=\text{id}_c\) and \(\text{id}_c\circ g=\text{id}_c\). For any object in any category, the identity morphism is guaranteed to exist and \(\text{id}_c\circ\text{id}_c=\text{id}_c\). So, \(\text{id}_c\) is an isomorphism with inverse given by \(\text{id}_c\).

`Per the definition of isomorphism, it is sufficient to find a morphism \\(g\in\mathcal{C}(c,c)\\)) such that \\(g\circ\text{id}_c=\text{id}_c\\) and \\(\text{id}_c\circ g=\text{id}_c\\). For any object in any category, the identity morphism is guaranteed to exist and \\(\text{id}_c\circ\text{id}_c=\text{id}_c\\). So, \\(\text{id}_c\\) is an isomorphism with inverse given by \\(\text{id}_c\\).`