It looks like you're new here. If you want to get involved, click one of these buttons!

- All Categories 2.2K
- Applied Category Theory Course 355
- Applied Category Theory Seminar 4
- Exercises 149
- Discussion Groups 49
- How to Use MathJax 15
- Chat 480
- Azimuth Code Project 108
- News and Information 145
- Azimuth Blog 149
- Azimuth Forum 29
- Azimuth Project 189
- - Strategy 108
- - Conventions and Policies 21
- - Questions 43
- Azimuth Wiki 711
- - Latest Changes 701
- - - Action 14
- - - Biodiversity 8
- - - Books 2
- - - Carbon 9
- - - Computational methods 38
- - - Climate 53
- - - Earth science 23
- - - Ecology 43
- - - Energy 29
- - - Experiments 30
- - - Geoengineering 0
- - - Mathematical methods 69
- - - Meta 9
- - - Methodology 16
- - - Natural resources 7
- - - Oceans 4
- - - Organizations 34
- - - People 6
- - - Publishing 4
- - - Reports 3
- - - Software 21
- - - Statistical methods 2
- - - Sustainability 4
- - - Things to do 2
- - - Visualisation 1
- General 39

Options

## Comments

I presume that the person is making a statement about graphs generally and not a specific graph.

The person is confused about the difference between a round-trip vs. a trip for which has a return flight.

`I presume that the person is making a statement about graphs generally and not a specific graph. The person is confused about the difference between a round-trip vs. a trip for which has a return flight.`

Yes, the only isomorphisms in the free category of any graph are the identity morphisms. This follows from the fact that the morphisms in \(\bf{Free}(G)\) do not obey any equations (other than those required in the definition of a category, i.e., the left and right unit laws).

Suppose, by way of contradiction, that \(f:A\to B\) is a non-identity isomorphism in \(\bf{Free}(G)(A,B)\). Then there is a morphism \(g:B\to A\) such that \(f\circ g=\text{id}_A\) and \(g\circ f=\text{id}_B\). However, since \(f\) is not an identity morphism and the only equations among elements of \(\bf{Free}(G)(A,B)\) are the left and right unit laws, no such morphism \(g\) exists. In particular, if \(A\neq B\), then there are no equations at all between elements of \(\bf{Free}(G)(A,B)\). Even if \(A=B\), the only option is \(g=\text{id}_A\), which yields \(f\circ\text{id}_A=\text{id}_A\), so that \(f=\text{id}_A\), which contradicts the assumption that \(f\) is not the identity morphism.

`Yes, the only isomorphisms in the free category of any graph are the identity morphisms. This follows from the fact that the morphisms in \\(\bf{Free}(G)\\) do not obey any equations (other than those required in the definition of a category, i.e., the left and right unit laws). Suppose, by way of contradiction, that \\(f:A\to B\\) is a non-identity isomorphism in \\(\bf{Free}(G)(A,B)\\). Then there is a morphism \\(g:B\to A\\) such that \\(f\circ g=\text{id}_A\\) and \\(g\circ f=\text{id}_B\\). However, since \\(f\\) is not an identity morphism and the only equations among elements of \\(\bf{Free}(G)(A,B)\\) are the left and right unit laws, no such morphism \\(g\\) exists. In particular, if \\(A\neq B\\), then there are no equations at all between elements of \\(\bf{Free}(G)(A,B)\\). Even if \\(A=B\\), the only option is \\(g=\text{id}_A\\), which yields \\(f\circ\text{id}_A=\text{id}_A\\), so that \\(f=\text{id}_A\\), which contradicts the assumption that \\(f\\) is not the identity morphism.`

I see, some care must be taken when constructing a graph suitable for construction of a Free category.

When parallel paths are present in the graph the are assumed to be not equal unless there is an equation specifically stating otherwise.

The only exception to this rule is the case of the identity morphisms which have the implicit \( id \circ id = id \) equation.

`I see, some care must be taken when constructing a graph suitable for construction of a Free category. When parallel paths are present in the graph the are assumed to be not equal unless there is an equation specifically stating otherwise. The only exception to this rule is the case of the identity morphisms which have the implicit \\( id \circ id = id \\) equation.`