It looks like you're new here. If you want to get involved, click one of these buttons!
Show that the limit formula in Theorem 3.90 works for products. See Example 3.89.
Theorem 3.90
Let \( \mathcal{J} \) be a category presented by the finite graph \( (V, A, s, t) \) together with some equations, and let \( D : \mathcal{J} \rightarrow \textbf{Set} \) be a set-valued functor. Write \( V = \lbrace v_1 , \cdots , v_n \rbrace \). The set $$ \lim_{\mathcal{J}} D := \lbrace (d_1 , \cdots , d_n ) | d_i \in D(v_i ) \text{ and for all } a : v_i \rightarrow v_j \in A \text{, we have } D(a)(d_i ) = d_j \rbrace $$ together with the projection maps \( p_i : (\lim_{\mathcal{J}} D) \rightarrow D(v_i ) \) given by \( p_i (d_1 , \cdots , d_n ) := d_i \), is a limit of \(D\).
Example 3.89
Products are limits where the indexing category consists of two objects \(v, w\) and no arrows, \( \mathcal{J} = [ \overset{v}{\bullet} \; \overset{w}{\bullet} ] \).
Comments
There are only id morphisms in \( \mathcal{J} \) which is isomorphic to \( \textbf{2} \).
$$ V_{\mathcal{J}} = \lbrace v, w \rbrace \\ A_{\mathcal{J}} = \lbrace 1_v, 1_w \rbrace $$ $$ X \times Y = \lim_{\mathcal{J}} D := \lbrace (D(v), D(w)), (D(1_v), D(1_w)) \rbrace $$ $$ p_v : X \times Y \mapsto D(v) \\ p_w : X \times Y \mapsto D(w); $$
There are only id morphisms in \\( \mathcal{J} \\) which is isomorphic to \\( \textbf{2} \\). \[ V_{\mathcal{J}} = \lbrace v, w \rbrace \\\\ A_{\mathcal{J}} = \lbrace 1_v, 1_w \rbrace \] \[ X \times Y = \lim_{\mathcal{J}} D := \lbrace (D(v), D(w)), (D(1_v), D(1_w)) \rbrace \] \[ p_v : X \times Y \mapsto D(v) \\\\ p_w : X \times Y \mapsto D(w); \]