Options

Introduction: Ignacio Viglizzo

edited May 27 in Chat

Hi! I'm a mathematician from Argentina. I did my Ph. D. in Bloomington, Indiana, USA. I'm here to read the book by Fong and Spivak, but I'm afraid that I won't be able to follow it as closely as I'd like to. The amount of material I found here is impressive, and a bit overwhelming. I want to test the math typing thing: $$F\vdash G$$ and also \({F\dashv G}\). Cheers!

Comments

  • 1.

    Welcome, Ignacio! What sort of math did you do your Ph.D. on?

    My lectures are meant to be very easy: no hard proofs, lots of examples, lots of explanation of key ideas. I suggest starting with Lecture 1 and moving on, using the "Syllabus" link at the top of this page.

    We've been talking about preorders, which are categories with at most one morphism from one object to another. Today is my second lecture on categories.

    Comment Source:Welcome, Ignacio! What sort of math did you do your Ph.D. on? My lectures are meant to be very easy: no hard proofs, lots of examples, lots of explanation of key ideas. I suggest starting with Lecture 1 and moving on, using the "Syllabus" link at the top of this page. We've been talking about preorders, which are categories with at most one morphism from one object to another. Today is my second lecture on categories.
  • 2.

    Thanks John! My dissertation is called "Coalgebras on Measure Spaces", and it´s about (kind of) the logic of measurable spaces. But before, and after that, I did work in lattices (as posets) with additional operations, related to logic (boolean, three-valued Lukasiewicz, Heyting, Nelson algebras). I will try to contribute as best I can and catch up.

    Comment Source:Thanks John! My dissertation is called "Coalgebras on Measure Spaces", and it´s about (kind of) the logic of measurable spaces. But before, and after that, I did work in lattices (as posets) with additional operations, related to logic (boolean, three-valued Lukasiewicz, Heyting, Nelson algebras). I will try to contribute as best I can and catch up.
  • 3.
    edited May 29

    Thank you for sharing your thesis Ignacio!

    I am very interested in logic related to probability measures.

    Could you point me at any axiomatizations and computational complexity results for logics over measures like you describe in Chapter 4?

    Comment Source:Thank you for sharing your thesis Ignacio! I am very interested in logic related to probability measures. Could you point me at any axiomatizations and computational complexity results for logics over measures like you describe in Chapter 4?
  • 4.
    Comment Source:Here´s a good paper by Goldblatt on that: https://pdfs.semanticscholar.org/e5bd/3f04504fe2ec620c3790911974ca3b6026e0.pdf
  • 5.

    This is a great paper, thank you Ignacio!

    Comment Source:This is a great paper, thank you Ignacio!
  • 6.
    edited May 30

    Given your expertise I think you'll have a pretty easy time with the section on preorders, Ignacio! If you wanted to start the course late, you picked the perfect thesis topic! You probably had it all planned out. image

    Comment Source:Given your expertise I think you'll have a pretty easy time with the section on preorders, Ignacio! If you wanted to start the course late, you picked the perfect thesis topic! You probably had it all planned out. <img src = "http://math.ucr.edu/home/baez/emoticons/tongue2.gif">
Sign In or Register to comment.