It looks like you're new here. If you want to get involved, click one of these buttons!
Suppose we have the preorders $$ \mathcal{X} := \left[ \text{monoid} \rightarrow \text{category} \leftarrow \text{preorder} \right] $$ $$ \mathcal{Y} := \left[ \text{nothing} \rightarrow \text{this book} \right] $$
Definition 4.2
Let \( \mathcal{X} = (X, \le_X ) \text{ and } \mathcal{Y} = (Y, \le_Y ) \) be preorders. A feasibility relation for \( \mathcal{X} \) given \( \mathcal{Y} \) is a monotone map $$ \tag{4.3} \Phi : \mathcal{X}^{op} \times \mathcal{Y} \rightarrow \textbf{Bool} $$ We denote this by \( \Phi : \mathcal{X} \nrightarrow \mathcal{Y} \). Given \( x \in X \text{ and } y \in Y \), if \( \Phi(x, y) = \text{true} \) we say \(x\) can be obtained given \(y\).
Comments
> 1) Draw the Hasse diagram for the preorder \\( \mathcal{X}^{op} \times \mathcal{Y} \\). 
I am not entirely sure what it means to "write down a profunctor" but I will make a guess.
$$ \begin{array}{c c | c} x & y & p \\ \text{monoid} & \text{this book} & \text{true} \\ \text{monoid} & \text{nothing} & \text{false} \\ \text{preorder} & \text{this book} & \text{true} \\ \text{preorder} & \text{nothing} & \text{false} \\ \text{category} & \text{this book} & \text{true} \\ \text{category} & \text{nothing} & \text{false} \end{array} $$ My uncle can explain categories, monoids and preorders if he has studied the book.
As will be seen later this can also be expressed as...
$$ \begin{array}{c c | c} \Lambda & \text{this book} & \text{nothing} \\ \text{monoid} & \text{true} & \text{false} \\ \text{preorder} & \text{true} & \text{false} \\ \text{category} & \text{true} & \text{false} \end{array} $$ Another way to think about this is to convert the \( \le \) into "better". On the consumer side, consuming less it "better", while on the producing side more is "better". Thus consuming less and/or producing more are both "better". Converting the consuming side means \( X_{op} \).
> 2) Write down a profunctor \\( \Lambda : \mathcal{X} \nrightarrow \mathcal{Y} \\) and, reading \\( \Lambda(x, y) = \text{true} \\) as “my uncle can explain \\(x\\) given \\(y\\)”, give an interpretation of the fact that the preimage of \\( \text{true} \\) forms an upper set in \\( \mathcal{X}^{op} \times \mathcal{Y} \\). I am not entirely sure what it means to "write down a profunctor" but I will make a guess. \[ \begin{array}{c c | c} x & y & p \\\\ \text{monoid} & \text{this book} & \text{true} \\\\ \text{monoid} & \text{nothing} & \text{false} \\\\ \text{preorder} & \text{this book} & \text{true} \\\\ \text{preorder} & \text{nothing} & \text{false} \\\\ \text{category} & \text{this book} & \text{true} \\\\ \text{category} & \text{nothing} & \text{false} \end{array} \] My uncle can explain categories, monoids and preorders if he has studied the book. As will be seen later this can also be expressed as...  \[ \begin{array}{c c | c} \Lambda & \text{this book} & \text{nothing} \\\\ \text{monoid} & \text{true} & \text{false} \\\\ \text{preorder} & \text{true} & \text{false} \\\\ \text{category} & \text{true} & \text{false} \end{array} \] Another way to think about this is to convert the \\( \le \\) into "better". On the consumer side, consuming less it "better", while on the producing side more is "better". Thus consuming less and/or producing more are both "better". Converting the consuming side means \\( X_{op} \\).