It looks like you're new here. If you want to get involved, click one of these buttons!

- All Categories 2.3K
- Chat 499
- Study Groups 18
- Petri Nets 9
- Epidemiology 3
- Leaf Modeling 1
- Review Sections 9
- MIT 2020: Programming with Categories 51
- MIT 2020: Lectures 20
- MIT 2020: Exercises 25
- MIT 2019: Applied Category Theory 339
- MIT 2019: Lectures 79
- MIT 2019: Exercises 149
- MIT 2019: Chat 50
- UCR ACT Seminar 4
- General 67
- Azimuth Code Project 110
- Statistical methods 3
- Drafts 2
- Math Syntax Demos 15
- Wiki - Latest Changes 3
- Strategy 113
- Azimuth Project 1.1K
- - Spam 1
- News and Information 147
- Azimuth Blog 149
- - Conventions and Policies 21
- - Questions 43
- Azimuth Wiki 708

Options

I'm attending the 6th World Congress and School on Universal Logic. The first tutorial that I'm attending is being given by Henri Prade, A logical view of analogical reasoning based on analogical proportions. He's describing analogies using logical relationships, for example, comparing the set relationships A-B and C-D.

Analogies are of the form: "A is to B as C is to D".

I'm thinking that category theory is natural for modeling analogies. If in one category we have a morphism m:A->B, then the question is whether there is a functor F such that F(m):F(A)->F(B) where we call F(A)=C and F(B)=D. Sometimes the analogy/functor exists and sometimes not. Sometimes the analogy/functor can only be defined in one way and sometimes not. But it seems that analogies capture the commutative diagrams that we draw with functors and morphisms.

Perhaps you have thought about this or might be interested to discuss this.

hello world×