It looks like you're new here. If you want to get involved, click one of these buttons!

- All Categories 2.2K
- Programming with Categories Course 25
- Exercises - Programming with Categories Course 15
- Mini-Talks - Programming with Categories Course 3
- Applied Category Theory Course 341
- Applied Category Theory Seminar 4
- Exercises - Applied Category Theory Course 149
- Discussion Groups 50
- How to Use MathJax 15
- Chat 487
- Azimuth Code Project 108
- News and Information 147
- Azimuth Blog 149
- Azimuth Forum 29
- Azimuth Project 189
- - Strategy 108
- - Conventions and Policies 21
- - Questions 43
- Azimuth Wiki 711
- - Latest Changes 701
- - - Action 14
- - - Biodiversity 8
- - - Books 2
- - - Carbon 9
- - - Computational methods 38
- - - Climate 53
- - - Earth science 23
- - - Ecology 43
- - - Energy 29
- - - Experiments 30
- - - Geoengineering 0
- - - Mathematical methods 69
- - - Meta 9
- - - Methodology 16
- - - Natural resources 7
- - - Oceans 4
- - - Organizations 34
- - - People 6
- - - Publishing 4
- - - Reports 3
- - - Software 21
- - - Statistical methods 2
- - - Sustainability 4
- - - Things to do 2
- - - Visualisation 1
- General 41

Options

On pages 205ff of "Seven Sketches", Brendan Fong und David Spivak show an example how a closed electric circuit with several valued elements and 4 ports can be considered as a morphism. They wrote: "We do this by marking the ports in the interface using functions from finite sets". Then they draw an one-element input set and a two-element output set and map these onto two arbitrary ports of the circuit. The question is, why they don't take a 256-element input set and a 7-element output set, and why they map the input set just to this port and not to another one (in "A compositional Framework for Reaction Network" John Baez and Blake Pollard give an example of a reaction Petri net that is a morphism from the empty set into itself).

In the example the circuit is an element of Hom[1,2] (1 und 2 mean the one-element or 2-element set respective), but it could might just as well be an element of Hom[256,7] or of Hom[0,0]. Is this indeed the intention?

hello world×