It looks like you're new here. If you want to get involved, click one of these buttons!

- All Categories 2.3K
- Chat 495
- Study Groups 6
- Biological Models 1
- Categorical Network Theory 1
- Programming with Categories 4
- Review Sections 6
- MIT 2020: Programming with Categories 53
- MIT 2020: Lectures 21
- MIT 2020: Exercises 25
- MIT 2019: Applied Category Theory 339
- MIT 2019: Lectures 79
- MIT 2019: Exercises 149
- MIT 2019: Chat 50
- UCR ACT Seminar 4
- General 64
- Azimuth Code Project 110
- Statistical methods 2
- Drafts 1
- Math Syntax Demos 15
- Wiki - Latest Changes 0
- Strategy 111
- Azimuth Project 1.1K
- - Spam 1
- News and Information 147
- Azimuth Blog 149
- - Conventions and Policies 21
- - Questions 43
- Azimuth Wiki 708

Options

*The product of categories.*

Given two categories \(C\) and \(D\), we may construct a new category \(C \times C\) by taking pairs of objects and morphisms.. More precisely:

- The objects of \(C \times D\) are pairs \((c,d)\) where \(c \in Ob\ C\) and \(d \in Ob\ D\).
- The morphisms \((c_1, d_1) \rightarrow (c_2,d_2)\) are pairs \((f,g)\) where \(f: c_1 \rightarrow c_2\) in \(C\) and \(g: d_1 \rightarrow d_2\) in \(D\).
- Composition is given pointwise: given \((f,g): (c_1,d_1) \rightarrow (c_2,d_2)\) and \((h,k): (c_2,d_2) \rightarrow (c_3,d_3)\), their composite is \((h \circ f, k \circ g): (c_1,d_1) \rightarrow (c_3,d_3)\).
- Similarly, the identity morphisms are given by \((id_c,id_d): (c,d) \rightarrow (c,d)\).

Recall that the category Cat whose objects are categories and morphisms are functors. Show that \(C \times D\) is the product of \(C\) and \(D\) in Cat.

hello world×