It looks like you're new here. If you want to get involved, click one of these buttons!

- All Categories 2.3K
- Chat 494
- ACT Study Group 5
- Azimuth Math Review 6
- MIT 2020: Programming with Categories 53
- MIT 2020: Lectures 21
- MIT 2020: Exercises 25
- MIT 2019: Applied Category Theory 339
- MIT 2019: Lectures 79
- MIT 2019: Exercises 149
- MIT 2019: Chat 50
- UCR ACT Seminar 4
- General 64
- Azimuth Code Project 110
- Drafts 1
- Math Syntax Demos 15
- Wiki - Latest Changes 1
- Strategy 110
- Azimuth Project 1.1K

Options

Now that the MIT 2020 course is over, let's keep our ACT study efforts going! See the category 'ACT Study Group'.

**Syllabus.**

For the MIT 2020 Programming with Categories course:

David Dalrymple's class summaries

Please add comments with your recommended entries for study!

## Comments

Bartosz Milewski's Blog

Categories For Programmers, which is selection of Bartosz's blog postsThe Comonad Reader Blog

Philip Freeman's Blog

Papers

Theorems For Free!(1989)Functional Programming with Bananas, Lenses, Envelopes and Barbed Wire(1991)Comprehending Monads(1990)Notions of Computation as Monads(1995)Automata and Coinduction (an exercise in coalgebra)(1998)Applicative Programming With Effects(2008)Reason Isomorphically!, (2010)Profunctor Optics(2012)Notions of Computation as Monoids(2014)A Representation Theorem For Second Order Functionals(2014)Haskell Libraries

`kan-extensions`

`fmlist`

`mmorph`

`free-categories`

`coq-category`

, which isn't in Haskell but is a great formulation of category theory in a pure functional language`- [Bartosz Milewski's Blog](https://bartoszmilewski.com/) - [_Categories For Programmers_](https://github.com/hmemcpy/milewski-ctfp-pdf/releases/download/v1.3.0/category-theory-for-programmers.pdf), which is selection of Bartosz's blog posts - The [Comonad Reader Blog](http://comonad.com/reader/) - [Philip Freeman's Blog](https://blog.functorial.com/) - Papers - [Wadler, _Theorems For Free!_ (1989)](https://ecee.colorado.edu/ecen5533/fall11/reading/free.pdf) - [Meijer et al, _Functional Programming with Bananas, Lenses, Envelopes and Barbed Wire_ (1991)](https://maartenfokkinga.github.io/utwente/mmf91m.pdf) - [Wadler, _Comprehending Monads_ (1990)](https://ncatlab.org/nlab/files/WadlerMonads.pdf) - [Moggi, _Notions of Computation as Monads_ (1995)](https://core.ac.uk/download/pdf/21173011.pdf) - [Rutten, _Automata and Coinduction (an exercise in coalgebra)_ (1998)](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.221.6957&rep=rep1&type=pdf) - [McBridge et. al, _Applicative Programming With Effects_ (2008)](https://openaccess.city.ac.uk/id/eprint/13222/1/) - [Hinze, _Reason Isomorphically!_, (2010)](http://www.cs.ox.ac.uk/people/daniel.james/iso/iso.pdf) - [Pickering et. al, _Profunctor Optics_ (2012)](https://arxiv.org/ftp/arxiv/papers/1703/1703.10857.pdf) - [Rivas et al., _Notions of Computation as Monoids_ (2014)](https://arxiv.org/pdf/1406.4823.pdf) - [Jaskelioff, _A Representation Theorem For Second Order Functionals_ (2014)](https://arxiv.org/pdf/1402.1699.pdf) - Haskell Libraries - [`kan-extensions`](https://hackage.haskell.org/package/kan-extensions) - [`fmlist`](https://hackage.haskell.org/package/fmlist) - [`mmorph`](https://hackage.haskell.org/package/mmorph) - [`free-categories`](http://hackage.haskell.org/package/free-categories-0.1.0.0) - John Wiegley's [`coq-category`](https://github.com/jwiegley/category-theory), which isn't in Haskell but is a great formulation of category theory in a pure functional language`

This took place in the context of the MIT 2019 course on applied category theory.

`* [77 lectures](https://forum.azimuthproject.org/categories/mit-2019%3A-lectures) by John Baez on applied category theory, Azimuth Forum. This took place in the context of the MIT 2019 course on applied category theory.`

`* Michael Barr and Charles Wells, [Category theory for computing science (1998)](http://bit.ly/37y54Tb) * Michael Barr and Charles Wells, [Toposes, triples and theories (1985, 2005)](http://bit.ly/39MvdiD)`