It looks like you're new here. If you want to get involved, click one of these buttons!

- All Categories 2.3K
- Chat 498
- Study Groups 14
- Petri Nets 6
- Epidemiology 3
- Leaf Modeling 1
- Review Sections 9
- MIT 2020: Programming with Categories 52
- MIT 2020: Lectures 21
- MIT 2020: Exercises 25
- MIT 2019: Applied Category Theory 339
- MIT 2019: Lectures 79
- MIT 2019: Exercises 149
- MIT 2019: Chat 50
- UCR ACT Seminar 4
- General 65
- Azimuth Code Project 110
- Statistical methods 2
- Drafts 5
- Math Syntax Demos 15
- Wiki - Latest Changes 3
- Strategy 113
- Azimuth Project 1.1K
- - Spam 1
- News and Information 147
- Azimuth Blog 149
- - Conventions and Policies 21
- - Questions 43
- Azimuth Wiki 707

Options

In the strategy discussion, I wrote:

All told, I propose an Azimuth quest with the following focus:

- Pursuit of applications of Petri nets to stochastic as well as deterministic epidemiology

This is wide open.

Here is one idea I had, which I posted to the Azimuth blog:

Modeling each country separately leaves holes in the overall model for a pandemic. E.g. if the curve goes down, travel restrictions are lifted, and then it goes back up due to what’s happening in other countries. Compartmental models use ODEs and assume a well-mixed population. What about a multi-level approach, where each country or well-mixed region has a compartmental model with its own parameters. Then there could be transitions between the compartments in different countries, reflecting flows due to travel. This looks like a potential application of composition of open networks. Perhaps a good composition rule could produce an aggregated, abstracted compartmental model for the whole globe. Or help us in other ways to understand the dynamics of the whole.

Posted to:

- How scientists can help fight Covid-19, John Baez, Azimuth blog, March 31.

Spelled out, the suggestion is to apply the open Petri net framework that John, Jade and Blake have been developing to the composition of global pandemic networks from smaller regional networks.

Open Petri nets, John C. Baez, Jade Master, Aug 2018.

A compositional framework for reaction networks, John C. Baez, Blake S. Pollard, April 2017.

hello world×