It looks like you're new here. If you want to get involved, click one of these buttons!

- All Categories 2.3K
- Chat 499
- Study Groups 18
- Petri Nets 9
- Epidemiology 3
- Leaf Modeling 1
- Review Sections 9
- MIT 2020: Programming with Categories 51
- MIT 2020: Lectures 20
- MIT 2020: Exercises 25
- MIT 2019: Applied Category Theory 339
- MIT 2019: Lectures 79
- MIT 2019: Exercises 149
- MIT 2019: Chat 50
- UCR ACT Seminar 4
- General 67
- Azimuth Code Project 110
- Statistical methods 3
- Drafts 2
- Math Syntax Demos 15
- Wiki - Latest Changes 3
- Strategy 113
- Azimuth Project 1.1K
- - Spam 1
- News and Information 147
- Azimuth Blog 149
- - Conventions and Policies 21
- - Questions 43
- Azimuth Wiki 708

Options

Created Experiments in Kato's inequality. Angle brackets don't render in my box. Those from blog do.

$$\langle \vert a\vert , H f\rangle \ge \langle (\sgn a)(Ka), f\rangle \quad \forall ..., f\ge0$$ Now me sleep, then work, then perhaps state an unsurprising theorem on stochastic semigroups, then sleep again, etc., then give proof of theorem. That's the plan.

## Comments

Sounds good!

`Sounds good!`

Alas time is relative, as are plans... Got stuck in practical botany and soil arts, and then product integrals...

Changed "stochastic semigroup" to "positivity preserving". That's the knack point methinks - contractivity being secondary.

`Alas time is relative, as are plans... Got stuck in practical botany and soil arts, and then product integrals... Changed "stochastic semigroup" to "positivity preserving". That's the knack point methinks - contractivity being secondary.`

I'm baack... (too late to phone in sick). It seems the experiment as originally intended has been performed to sufficient precision by one Wolfgang Arendt in 1984...

So... I was sick, and had this 3rd idea of proof and ventured into combining Vitali's theorem on stochastic convergence with Banach-Alaoglu. And yet I didn't make it to the internets box (let alone boot my crazy offline laptop) to update said wiki page. At least, in the parallel universe of my micro paper works it is verified that I haven't saved Shigekawa's 1st preprint (incl. his proof, perhaps giving the idea, other than Barry Simon's simpler proof via resolventics.)...

Of all thisa lemma remains (the only thing my mathematical experimentations produced) which questions the common definition of the signumfunctional(not always linear). So, the experiment might go on...Will write up later, so the plan.

`I'm baack... (too late to phone in sick). It seems the [experiment](http://mathoverflow.net/questions/61270/infinitesimal-generators-of-stochastic-processes) as originally intended has been performed to sufficient precision by one Wolfgang Arendt in 1984... So... I was sick, and had this 3rd idea of proof and ventured into combining Vitali's theorem on stochastic convergence with Banach-Alaoglu. And yet I didn't make it to the internets box (let alone boot my crazy offline laptop) to update said wiki page. At least, in the parallel universe of my micro paper works it is verified that I haven't saved Shigekawa's 1st preprint (incl. his proof, perhaps giving the idea, other than Barry Simon's simpler proof via resolventics.)... **Of all this** a lemma remains (the only thing my mathematical experimentations produced) which questions the common definition of the signum _functional_ (not always linear). So, the experiment might go on... Will write up later, so the plan.`

By the way, Martin - thanks for that reference over on MathOverflow. I haven't gotten around to reading it. I've actually become somewhat more accepting of nonsymmetric Dirichlet forms, despite their limitations. I'm enjoying that Springer book on nonsymmetric Dirichlet forms, whatever it's called. But I do want to come back to this!

`By the way, Martin - thanks for that reference over on MathOverflow. I haven't gotten around to reading it. I've actually become somewhat more accepting of nonsymmetric Dirichlet forms, despite their limitations. I'm enjoying that Springer book on nonsymmetric Dirichlet forms, whatever it's called. But I do want to come back to this!`

Dirichlet forms is 1st Kato inequality world (in essence - to get Markovian something more than 1st Kato is needed), where you have some quadratic thing and can work with sort of a square root of the generator (e.g. differential with Laplacian). I don't remember anything of the Röckner & Ma book. Should have had a look.

This 2nd Kato inequality thing is when there's no quadratic form available.

Alas I haven't yet studied Arendt's proof completely: The major part is in another paper. I'm thinking about translating it from the general Banach space setting to L^1. Plus I should write a little wikipedia article on Kato's inequalities before I forget the stuff again.

Maybe I find time this weekend. I'm a bit overworked these days.

`Dirichlet forms is 1st Kato inequality world (in essence - to get Markovian something more than 1st Kato is needed), where you have some quadratic thing and can work with sort of a square root of the generator (e.g. differential with Laplacian). I don't remember anything of the Röckner & Ma book. Should have had a look. This 2nd Kato inequality thing is when there's no quadratic form available. Alas I haven't yet studied Arendt's proof completely: The major part is in another paper. I'm thinking about translating it from the general Banach space setting to L^1. Plus I should write a little wikipedia article on Kato's inequalities before I forget the stuff again. Maybe I find time this weekend. I'm a bit overworked these days.`