I found out some interesting things about Systems Biology Graphical Notation (SBGN) from [Nicolas Le Novere](http://lenoverelab.org/perso/lenov/index.html), who is part of the group developing this.

I said:

> I'm working on the mathematical foundations of many different diagrammatic languages for networks. My ultimate goal is to study networks in biology and ecology, hence my interest in SBGN. So far I'm finding plenty of food for thought in simpler subjects, like the use of diagrammatic languages in engineering. These are simpler for me since the engineers already use these networks in a mathematical way; they just don't bring the full resources of modern mathematics to bear.

He said:

> It is worth to say that the three SBGN languages have equivalent modelling representations. SBGN Process Descriptions are representations of ... processes, as used in chemical kinetics (and in general in general systems theory). One can derive an ODE system from an SBGN PD (the opposite is harder). SBGN Entity relationships correspond to rule-based models (e.g. models encoded in BioNetGen, Kappa etc.). SBGN Activity Flows correspond to logical models (the approaches used by Stuart Kauffman and Rene Thomas).

This was really helpful to me, since I didn't know this! I'll study them more, starting with the Process Description language since this sounds similar to chemical reaction networks, only more powerful.

I added this info to the [[Network theory]] page of the [[Azimuth Library]].

I said:

> I'm working on the mathematical foundations of many different diagrammatic languages for networks. My ultimate goal is to study networks in biology and ecology, hence my interest in SBGN. So far I'm finding plenty of food for thought in simpler subjects, like the use of diagrammatic languages in engineering. These are simpler for me since the engineers already use these networks in a mathematical way; they just don't bring the full resources of modern mathematics to bear.

He said:

> It is worth to say that the three SBGN languages have equivalent modelling representations. SBGN Process Descriptions are representations of ... processes, as used in chemical kinetics (and in general in general systems theory). One can derive an ODE system from an SBGN PD (the opposite is harder). SBGN Entity relationships correspond to rule-based models (e.g. models encoded in BioNetGen, Kappa etc.). SBGN Activity Flows correspond to logical models (the approaches used by Stuart Kauffman and Rene Thomas).

This was really helpful to me, since I didn't know this! I'll study them more, starting with the Process Description language since this sounds similar to chemical reaction networks, only more powerful.

I added this info to the [[Network theory]] page of the [[Azimuth Library]].