John could you go to these links:

1.What is the formula for the continuous wavelet transforms being used here?

[ContinuousWaveletTransform](http://reference.wolfram.com/language/ref/ContinuousWaveletTransform.html)

And then click on DETAILS AND OPTIONS look for square bullet item "The continuous wavelet transform of a function..." and the formula is there. Sorry cannot typeset here easily.

2.What is a “frequency 4” Gabor wavelet?

[Gabor Wavelet](http://reference.wolfram.com/language/ref/GaborWavelet.html)

click on DETAILS second square bullet is the formula, replace w by 4, if you need that done symbolically in a few moments I post a little thing after this...

3.Why are you using a frequency 4 Gabor wavelet?

I chose 4 for no particular reason other than it gives a non-even Scalogram, if you increase the frequency to 6 and more then solid frequency bands appear and I feel that it might be more revealing if a lesser frequency used. This part of choosing the parameters for wavelets is mostly experimentation, I did not find any references on how to figure these numbers out algebraically. I do not make any assumptions just try different numbers and report the results or match to what is known already.

As a matter of fact I plot and analyse using many frequencies, but I did not want to clutter the documents, by all means one should use many frequencies and compare results. If I do it my way, I will generate a large set of such plots in the server then someone like yourself cruise through and decide which frequency is best to consider.

4.Why are you using the 4th derivative of a Gaussian?

Same as 3, but usually I like to use 40 and more! to get a better sense of the burst-noise in the data.

5.Why is there almost no power at periods shorter than 9.5 months?

Example power number: 0.0018 or 0.002 for {1} is still significant! usually the NOISE for me is 10^-6 and I consider 10^-3 significant. Therefore somehow I am not sure how to think about this. If you are asking me why these numbers are not larger, I could not give you a single response, I could only say that is what is in the data. Best possible guess the data collection issue.

Dara

1.What is the formula for the continuous wavelet transforms being used here?

[ContinuousWaveletTransform](http://reference.wolfram.com/language/ref/ContinuousWaveletTransform.html)

And then click on DETAILS AND OPTIONS look for square bullet item "The continuous wavelet transform of a function..." and the formula is there. Sorry cannot typeset here easily.

2.What is a “frequency 4” Gabor wavelet?

[Gabor Wavelet](http://reference.wolfram.com/language/ref/GaborWavelet.html)

click on DETAILS second square bullet is the formula, replace w by 4, if you need that done symbolically in a few moments I post a little thing after this...

3.Why are you using a frequency 4 Gabor wavelet?

I chose 4 for no particular reason other than it gives a non-even Scalogram, if you increase the frequency to 6 and more then solid frequency bands appear and I feel that it might be more revealing if a lesser frequency used. This part of choosing the parameters for wavelets is mostly experimentation, I did not find any references on how to figure these numbers out algebraically. I do not make any assumptions just try different numbers and report the results or match to what is known already.

As a matter of fact I plot and analyse using many frequencies, but I did not want to clutter the documents, by all means one should use many frequencies and compare results. If I do it my way, I will generate a large set of such plots in the server then someone like yourself cruise through and decide which frequency is best to consider.

4.Why are you using the 4th derivative of a Gaussian?

Same as 3, but usually I like to use 40 and more! to get a better sense of the burst-noise in the data.

5.Why is there almost no power at periods shorter than 9.5 months?

Example power number: 0.0018 or 0.002 for {1} is still significant! usually the NOISE for me is 10^-6 and I consider 10^-3 significant. Therefore somehow I am not sure how to think about this. If you are asking me why these numbers are not larger, I could not give you a single response, I could only say that is what is in the data. Best possible guess the data collection issue.

Dara