Has anyone actually seen a fit of the delay differential equation (or even a Lorenz model) for modeling ENSO? The delay differential of a charge-discharge oscillator seems to be the consensus model for ENSO but don't ever recall seeing anybody comparing an impressive model solution against experimental results.

The model I am using is clearly related but a significant simplification to the delay differential equation. I understand why there isn't for a Lorenz model because it is much too sensitive to initial conditions. What likely provides the stability in the solution is the impact of the forcing function. Like the Lorenz, the delay differential will not respond predictably at all to changes in the forcing, as it is close to the edge of chaotic behavior. Whereas the 2nd-order wave equation with perturbation that I am applying is much better behaved with slight changes in forcing.


This paper by Tziperman, Scher, Zebiak, Cane is close to what I am thinking about
http://dash.harvard.edu/bitstream/handle/1/3425922/Tziperman_ControllingSpatiotemporal.pdf

In climate science research, a "narrative" description of the behavior always seems to be of primary importance. To me this is endlessly frustrating because I like to go straight to simplified first-order physics and math to see what kind of headway one can make. Somebody once compared these narratives to the ["just so stories"](http://en.wikipedia.org/wiki/Just_So_Stories) of Rudyard Kipling. I can see how people can get drawn into these because they are often beguiling and leave room open for lots of discussion.