Here is a graphic from Los Alamos showing the currents of the world’s oceans

![img](http://assets.climatecentral.org/images/made/images/remote/http_assets.climatecentral.org/images/uploads/news/4_1_15_Brian_LosAlamosOceanModel_720_494_s_c1_c_c.jpg)

from http://www.lanl.gov/newsroom/picture-of-the-week/pic-week-2.php

> "How currents and eddies move that heat around is of particular interest to scientists, but the current crop of climate models can’t fully reproduce them." -- http://www.climatecentral.org/news/one-image-future-climate-models-18844

I have seen much discussion by skeptics that it is futile to try to simulate turbulence of the ocean and atmosphere due to the extreme resolution needed to solve the [Navier-Stokes](http://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations) formula at all spatio-temporal scales.

This brings up a conundrum: why is it possible that the *really* large-scale turbulence, such as El Nino and ENSO, can be solved -- as I am suggesting with the [SOI model](http://contextearth.com/2014/11/18/paper-on-sloshing-model-for-enso/) ? Shouldn't that be intractable?

I think a solution is actually possible due to the over-riding forcing stimulus. If the external factors did not exist, it is likely that ENSO would not be as strong. Just like tides would not exist without the presence of the moon.

Further, I consider the seemingly chaotic vortices that appear in the graphic above analogous to the scattering of the electrons in a crystal lattice. An individual electron will take a chaotic route to get from point A to B, but overall it is the external potential that enables the electronic device to oscillate its current in interesting ways depending on the specific forcing applied. That is statistical mechanics in action.

To extend the analogy, when I first heard what a dipole was in sophomore E-M theory, it came only after separating the temporal behavior from the spatial characteristics of Maxwell's equation. That was known as a "standing wave" dipole and it was quite common to see such a field for a waveguide or resonant cavity. In this case the math derivation preceded the observation in my education.

So when I started studying the Southern Oscillation of ENSO and saw mention of the dipole nature of this phenomenon, things started to click and I decided to see how far one can go from this kind of first-order analysis.

This forum thread is essentially a status of the results so far, and I am more convinced that ENSO is solvable than when I first started on this project.

And that is why I think the skeptics are a bit mad about suggesting that climate can't be simulated at the ENSO scale.