Hi WebHubTel
I try to answer your accusations, despite calling me a liar, which is somewhat amusing as you seem very interested in what I’m doing. But, first I shall like to explain what I’ve done. Over 4 years ago I discovered with the help of my neural network that ENSO variation was influence by strong tidal gravitational forces. Since then I’ve refined and experimented and included solar electromagnetic data which are also correlated to ENSO.

My goal is to make long range ENSO predictions as good as possible. I’ve now created a sharp and effective tool to investigate weak correlations which with normal statistical methods are almost impossible to discover. There are a few steps still I plan to make which would resolve both the strength of El Niños problem and the locations. In other words, whether it is a modoki type El Niño, an eastern placement or somewhere in between. Your claim that we don’t know the future values of the values of Earth’s magnetic values and the solar wind is correct. However, the expected overall trend is known. So what I have done is that I have used different trend lines for these data series and added stochastic noise to these data coherent to each other’s. Each ensemble is independent to each other as they use unique generated solar data and also unique in-data into the neurons which are randomly selected with unique random seeds. Of course in the training part there is a tendency for overfitting, but that is an integrated part of how neural network works. This problem is eliminated for the forecasts as I use unique randomized input data and unique solar forecast data for each ensemble data.

I see that you work with QBO which cyclicity is connected directly to the Moon cycles and much easier to work with than it is with ENSO. You seem to get entangled with Laplace transforms and differential equations related to QBO.

The fact that I have identified not only some obscure triggers for ENSO variations, but the main underlining drivers for ENSO variability and the climate community has not, raises some interesting questions. Why haven’t they done this and what does this tell you about the credibility of the GCM climate models?