This is the physics of the tidal forcing -- imparting a 1 millisecond slowdown (or speedup) on the rotation of the earth with a surface velocity of almost 500 meters/second over the course of a couple of weeks (a fortnight) will result in an inertial lateral movement of ~ 1/2 a meter in the volume of the Pacific ocean due to Newton's first law.

This does not seem like a big deal until you realize that the thermocline can absorb this inertial impulse as a vertical sloshing, since the effective gravity is reduced by orders of magnitude due to the slight density differences above and below the thermocline. This is reflected as an Atwood number and shows up in Rayleigh-Taylor instability experiments, e.g. [SEE THIS PAPER](http://rsta.royalsocietypublishing.org/content/roypta/368/1916/1663.full.pdf)

With an Atwood number less than 0.001 which is ~0.1% density differences in a stratified fluid, the 0.5 meter displacement that occurs over two weeks now occurs effectively over half an hour. That's just an elementary scaling exercise.

So intuitively, one has to ask the question of what would happen if the ocean was translated laterally by 1/2 a meter over the course of a 1/2 an hour? We know what happens with earthquakes in something as simple as a swimming pool

https://youtu.be/27GMnYEWL0M

or as threatening as a tsunami. But this is much more subtle because we can't obviously see it, and why it has likely been overlooked as a driver of ENSO.

All that math modeling of ENSO described here works backwards to this point. The *actual forcing* working on the earth's rotation can lead to the response shown here, both in the dynamic sense of tracing the measured path and now in terms of a physical order-of-magnitude justification.