John Baez wrote:
> I also suggest that you ask hundreds of small, specific questions on this forum.

Well, since partition logic seems to be the topic _du jour_, here's a thought that's been bouncing around my head. There's a paper I read last year that explains Stålmarck's method, an algorithm for determining if a given propositional formula is a tautology:

[Sheeran M., Stålmarck G. (1998) A Tutorial on Stålmarck’s Proof Procedure for Propositional Logic. In: Gopalakrishnan G., Windley P. (eds) Formal Methods in Computer-Aided Design. FMCAD 1998. Lecture Notes in Computer Science, vol 1522. Springer, Berlin, Heidelberg](

The proof systems this paper describes look like they're taking a discrete partition on subformulae and inferring additional relationships. When a subformula is found to be in the same equivalence class as \\(\top\\), we know it's a tautology. So my.. it's not exactly a small, specific _question_, but my _thought process_ is that I'd like to understand the correspondence (if any) between Stålmarck's method and partition logic. Hopefully I'll have some actual questions somewhere down the line.