Perhaps, due to our interest in things categorical, we can enjoy (instead of Cauchy sequence methods) to see the order of the (extended) real line as the [Dedekind-MacNeille_completion of the rationals](https://en.wikipedia.org/wiki/Dedekind%E2%80%93MacNeille_completion#Examples). Matthew has told us interesting things about it [before](https://forum.azimuthproject.org/discussion/comment/16714/#Comment_16714).

Hausdorff, on his part, in the book I mentioned [here](https://forum.azimuthproject.org/discussion/comment/16154/#Comment_16154), [says](https://books.google.es/books?id=M_skkA3r-QAC&pg=PA85&dq=each+everywhere+dense+type&hl=en&sa=X&ved=0ahUKEwjLkJao-9DaAhWD2SwKHVrkBcIQ6AEIKTAA#v=onepage&q=each%20everywhere%20dense%20type&f=false) that any total order, dense, and without \\( (\omega,\omega^*) \\) [gaps](https://en.wikipedia.org/wiki/Hausdorff_gap), has embedded the real line. I don't have a handy reference for an isomorphism instead of an embedding ("everywhere dense" just means dense here).

Hausdorff, on his part, in the book I mentioned [here](https://forum.azimuthproject.org/discussion/comment/16154/#Comment_16154), [says](https://books.google.es/books?id=M_skkA3r-QAC&pg=PA85&dq=each+everywhere+dense+type&hl=en&sa=X&ved=0ahUKEwjLkJao-9DaAhWD2SwKHVrkBcIQ6AEIKTAA#v=onepage&q=each%20everywhere%20dense%20type&f=false) that any total order, dense, and without \\( (\omega,\omega^*) \\) [gaps](https://en.wikipedia.org/wiki/Hausdorff_gap), has embedded the real line. I don't have a handy reference for an isomorphism instead of an embedding ("everywhere dense" just means dense here).