Thanks Jan,

As Brad Marston says, the key to modeling toroids (vortex rings), such as QBO, is to assume two equators. The one equator is the physical equator of the earth, while the other equator is the characteristic internal twisting of the vortex ring.


The lower dimensionality must lead to the inverse cascade and the preservation of order at the expense of further finer-levels of turbulence. That must be why QBO and ENSO are not at all turbulent flows. Gravity and the Coriolis forces around the physical equator are constraining the dimensionality of the system, while the gravitational influence of the moon and sun are providing additonal perturbing driving tidal forces.

On the other hand, the Vortex Ring Collision videos show what happens when the flow is unconstrained in the outward direction.


There's this guy on the blogs, David P. Young, who is apparently an aero engineer at Boeing, who claims that further modeling of fluid dynamics is hopeless for climate science, because the turbulence cascade always goes toward finer levels of details. And because the finer levels take more and more computational power, then it becomes impossible to make any progress and any further research, such as with climate GCMs, is doomed to failure.

But as we see with an inverse cascade, quite the opposite occurs -- the behaviors may become more ordered and occur at larger spatial scales. This is exactly what Brad Marston is pointing out and counters what naysayers like Young are claiming.