There was a paper titled ["Numerical Bifurcation Methods applied to Climate Models: Analysis beyond Simulation"](https://www.nonlin-processes-geophys-discuss.net/npg-2019-29/#discussion) which was open review

I asked a question based on an excerpt in the paper:

> "*All of the results of continuation methods described above were obtained under stationary forcing and for many in the field this seems disjoint from the real climate system, which is obviously forced by a non-stationary insolation component (on diurnal, seasonal and orbital time scales).* "

>Are tidal forcing factors considered on orbital time scales? According to Munk and Wunsch, tidal factors are a factor in overturning circulation. -- Munk, W. & Wunsch, C. Abyssal recipes II: energetics of tidal and wind mixing. Deep Sea Research Part I: Oceanographic Research Papers 45, 1977–2010 (1998).

Obviously I was trying to provoke the author into addressing what I think are the real drivers of the system, that is the tidal+seasonal forcing.

The author responded:

> "Tidal factors are certainly important the maintain the mean state ocean circulation on long time scales, but they are usually not considered when looking at orbital variations, where changes in this mean state are considered. Effectively, they are represented at a high aggregate level by the vertical mixing coefficients in the ocean model component."

This is an inadequate response in that admitting that tidal forcing works on long scales with the knowledge that it also works on short time scales (i.e. ocean tides) misses the obvious intermediate level that ENSO and the other oceanic dipoles work on. From the second sentence, I am assuming any contributions of tides are essentially introduced only by parameterizing the mean-value fluid coefficients so the forcing will never pass through and show up in the output of the model as a response.

ps. Cant comment further on the article as the review period is now closed.

I asked a question based on an excerpt in the paper:

> "*All of the results of continuation methods described above were obtained under stationary forcing and for many in the field this seems disjoint from the real climate system, which is obviously forced by a non-stationary insolation component (on diurnal, seasonal and orbital time scales).* "

>Are tidal forcing factors considered on orbital time scales? According to Munk and Wunsch, tidal factors are a factor in overturning circulation. -- Munk, W. & Wunsch, C. Abyssal recipes II: energetics of tidal and wind mixing. Deep Sea Research Part I: Oceanographic Research Papers 45, 1977–2010 (1998).

Obviously I was trying to provoke the author into addressing what I think are the real drivers of the system, that is the tidal+seasonal forcing.

The author responded:

> "Tidal factors are certainly important the maintain the mean state ocean circulation on long time scales, but they are usually not considered when looking at orbital variations, where changes in this mean state are considered. Effectively, they are represented at a high aggregate level by the vertical mixing coefficients in the ocean model component."

This is an inadequate response in that admitting that tidal forcing works on long scales with the knowledge that it also works on short time scales (i.e. ocean tides) misses the obvious intermediate level that ENSO and the other oceanic dipoles work on. From the second sentence, I am assuming any contributions of tides are essentially introduced only by parameterizing the mean-value fluid coefficients so the forcing will never pass through and show up in the output of the model as a response.

ps. Cant comment further on the article as the review period is now closed.