@WebHubTel wrote:

> Just because a sigmoid-shaped curve follows a shape such as 1/(1+A exp(-t)) doesn't mean that it comes solely from the logistic equation. As noted in #2, consider that just as the logistic sigmoid also maps to the [Fermi-Dirac distribution](https://en.wikipedia.org/wiki/Fermi%E2%80%93Dirac_statistics#Fermi%E2%80%93Dirac_distribution), the heuristic logistic equation derivation also appears to be just a quirky coincidence.

Not sure what you mean by the heuristic logistic equation derivation, and by it being a coincidence.

Also not sure how this relates to your point, but I see that in the Petri net analysis for SI compartmental, the logistic equation is a result not a premise of analyzing the rate equation for a highly simplistic stochastic process model that is motivated by empirical considerations.

> Just because a sigmoid-shaped curve follows a shape such as 1/(1+A exp(-t)) doesn't mean that it comes solely from the logistic equation. As noted in #2, consider that just as the logistic sigmoid also maps to the [Fermi-Dirac distribution](https://en.wikipedia.org/wiki/Fermi%E2%80%93Dirac_statistics#Fermi%E2%80%93Dirac_distribution), the heuristic logistic equation derivation also appears to be just a quirky coincidence.

Not sure what you mean by the heuristic logistic equation derivation, and by it being a coincidence.

Also not sure how this relates to your point, but I see that in the Petri net analysis for SI compartmental, the logistic equation is a result not a premise of analyzing the rate equation for a highly simplistic stochastic process model that is motivated by empirical considerations.