Ex 6. Show that the hom functor \\(A^{\rightarrow} = hom_X(A,.): X \rightarrow Set\\) preserves monics, that is, if \\(\alpha: C \rightarrow D\\) is monic in X, then \\(A^{\rightarrow}(\alpha): hom_X(A,C) \rightarrow hom_X(A,D)\\) is also monic.

Ex 7. Describe the arrow part of the hom functor \\(A^{\rightarrow}\\) and the naturalness condition.

Ex 7. Describe the arrow part of the hom functor \\(A^{\rightarrow}\\) and the naturalness condition.