To start the ball rolling, here is a qualitative digest of the paper:

> In The Formation of a Tree Leaf by Qinglan Xia, we see a possible key to Nature’s algorithm for the growth of leaf veins. The vein system, which is a transport network for nutrients and other substances, is modeled by Xia as a directed graph with nodes for cells and edges for the “pipes” that connect the cells. Each cell gives a revenue of energy, and incurs a cost for transporting substances to and from it.

> The total transport cost depends on the network structure. There are costs for each of the pipes, and costs for turning the fluid around the bends. For each pipe, the cost is proportional to the product of its length, its cross-sectional area raised to a power α, and the number of leaf cells that it feeds. The exponent α captures the savings from using a thicker pipe to transport materials together. Another parameter β expresses the turning cost.

> Development proceeds through cycles of growth and network optimization. During growth, a layer of cells gets added, containing each potential cell with a revenue that would exceed its cost. During optimization, the graph is adjusted to find a local cost minimum. Remarkably, by varying α and β, simulations yield leaves resembling those of specific plants, such as maple or mulberry.

> **A growing network**

> Unlike approaches that merely create pretty images resembling leaves, Xia presents an algorithmic model, simplified yet illuminating, of how leaves actually develop. It is a network-theoretic approach to a biological subject, and it is mathematics—replete with lemmas, theorems and algorithms—from start to finish.

From:

* [Prospects for a Green Mathematics](https://johncarlosbaez.wordpress.com/2013/02/15/prospects-for-a-green-mathematics/), John Baez and David Tanzer, Azimuth Blog. Originally published in Mathematics of Planet Earth Blog, February 2013.