"Who cares?"

I do. You claimed nothing was known to disturb ENSO cycles, so I corrected that misimpression with several counter-examples both shorter and longer in time. Plate tectonics is of keen interest to geophysicists interested in how ENSO ever set up in the first place. Invoking football when ENSO chaos is brought up is similarly allowed, as you care to do. Jupiter does not seem to have a direct equivalent of ENSO, for lack of continental plates.

What if the ENSO-QBO Lunisolar forcing hypothesis is mistaken, for the many specific possible reasons being supplied? Would that not be "useful"? The Jupiter QQO case and the elaboration of your 60Hz hum analogy should be addressed. Its also not enough to claim a statistical model is correct. You want to prove prediction empirically and also explain the detailed physics of forcing every causal step of the way.

Lin & Qian rightly propose to add Lunisolar dynamics into the most advanced multi-physics models, rather than negate and replace them. Ironically, this may eventually take the form of cancelling Lunisolar component signals that cause noise in the data, while recognizing those that may add some weak forcing. Then there is the excitation factor to separate out. Lunisolar excitation might be predicted to increase ENSO cycle frequency. These are fine open questions.

If your model by itself is not the most predictive of upcoming ENSO cycles, you could sort out all the open questions in order to join rather than stand apart from the major ENSO modelling team efforts, adding your particular expertise in Lunisolar factors, as a key aspect of a most-complete ENSO picture, with best-prediction.

ENSO effect on sea-surface height does not exactly match "straightforward" LaPlace Tidal Equation predictions. Heat and downwind vertical sea-surface expansion components are missing.

Science is following a trail of inquiry wherever it eventually leads; not sticking to an idée fixe starting-point. I am learning a lot here. QBO dynamics are particularly beautiful to first grasp, less of a confused morass than ENSO, with all its surface complications.