PaulP: "An external force is needed to cause the winds to change. Amazing how something so elementary can stump so many people"

Unsure what you mean by stumped. Winds do not remain constant by absence of external force. They run down by approaching pressure equilibrium. Internal vortices would decay into progressively smaller vortices. Winds must change regardless of externalities. They are not a perpetual motion fallacy case.

Here we are talking about ITCZ wind flow across the entire Pacific piling up water in the West that then sloshes somewhat chaotically. That's scarcely Lunisolar period-forced, but more dependent on geographic structural harmonic periods.

PaulP: "Coriolis is constant"

Not really. Coriolis is not locally constant, as the variable interaction of turbulent convective flow with planetary rotation. A lot of convective flow starts thermally, from insolation and geothermal sources, that then interacts with rotation as Coriolis Effect. This is the Geostrophic Balance. Its not even fully constant in bulk, only roughly so, since the Sun is dynamic, Earth's core is cooling, and various other dynamical details.

PaulP: "You must be under the mistaken impression that none of this is published."

I am reviewing here multiple alternative explanations to your forcing-only hypothesis to account for Lunisolar artifacts in geophysical data. I have not yet seen most of these published by you or anyone else, but perhaps you can pinpoint such prior instances, being better acquainted with the literature. These would help explain why your model might not prove able to predict the next few ENSO cycles, if that is the outcome.

If any of these alternative explanations are novel to the literature, and have significance, you got first crack to peer-publish.