Gerald Jay Sussman and Jack Wisdom's book *Structure and Interpretation of Classical Mechanics, Second Edition* from the MIT press is [available free](https://mitpress.mit.edu/books/structure-and-interpretation-classical-mechanics-0) online. [ToC](https://mitpress.mit.edu/sites/default/files/titles/content/sicm_edition_2/toc.html)

Description:
>We now know that there is much more to classical mechanics than previously suspected. Derivations of the equations of motion, the focus of traditional presentations of mechanics, are just the beginning. This innovative textbook, now in its second edition, concentrates on developing general methods for studying the behavior of classical systems, whether or not they have a symbolic solution. It focuses on the phenomenon of motion and makes extensive use of computer simulation in its explorations of the topic. It weaves recent discoveries in nonlinear dynamics throughout the text, rather than presenting them as an afterthought. Explorations of phenomena such as the transition to chaos, nonlinear resonances, and resonance overlap to help the student develop appropriate analytic tools for understanding. The book uses computation to constrain notation, to capture and formalize methods, and for simulation and symbolic analysis. The requirement that the computer be able to interpret any expression provides the student with strict and immediate feedback about whether an expression is correctly formulated.

>This second edition has been updated throughout, with revisions that reflect insights gained by the authors from using the text every year at MIT. In addition, because of substantial software improvements, this edition provides algebraic proofs of more generality than those in the previous edition; this improvement permeates the new edition.

From the 1st ed. preface:
>The contents of our class began with ideas from a class on nonlinear dynamics and solar system dynamics by Wisdom and ideas about how computation can be used to formulate methodology developed in an introductory computer science class by Abelson and Sussman. When we started we expected that using this approach to formulate mechanics would be easy. We quickly learned that many things we thought we understood we did not in fact understand. Our requirement that our mathematical notations be explicit and precise enough that they can be interpreted automatically, as by a computer, is very effective in uncovering puns and flaws in reasoning. The resulting struggle to make the mathematics precise, yet clear and computationally effective, lasted far longer than we anticipated. We learned a great deal about both mechanics and computation by this process. We hope others, especially our competitors, will adopt these methods, which enhance understanding while slowing research

It looks like a useful reference, beginning with configuration spaces, action and Lagrangians then general rigid bodies, quaternions, Hamiltonians, phase space and perturbation theory.