There are five partitions possible on a set with three elements, say \\( T = {12, 3, 4} \\).

**Example 1.86**.

Let \\( S = {1, 2, 3, 4} \\), \\( T = {12, 3, 4} \\), and \\( g: S \rightarrow T \\) by \\( g(1) = g(2) = 12 , g(3) = 3, \text{ and } g(4) = 4 \\).

Using the same \\( S \\) and \\( g: S \rightarrow T \\) as in Example 1.76,

determine the partition \\( g^\*(c) \\) on \\( S \\) for each of the five partitions \\( c: T \twoheadrightarrow P \\).

[Previous](https://forum.azimuthproject.org/discussion/1911)

[Next](https://forum.azimuthproject.org/discussion/1910)

**Example 1.86**.

Let \\( S = {1, 2, 3, 4} \\), \\( T = {12, 3, 4} \\), and \\( g: S \rightarrow T \\) by \\( g(1) = g(2) = 12 , g(3) = 3, \text{ and } g(4) = 4 \\).

Using the same \\( S \\) and \\( g: S \rightarrow T \\) as in Example 1.76,

determine the partition \\( g^\*(c) \\) on \\( S \\) for each of the five partitions \\( c: T \twoheadrightarrow P \\).

[Previous](https://forum.azimuthproject.org/discussion/1911)

[Next](https://forum.azimuthproject.org/discussion/1910)