We claim that there is exactly one graph homomorphism \\( \alpha : G \rightarrow H \\) such that \\( \alpha_{Arrow}(a) = d \\).

1. What is the other value of \\( \alpha_{Arrow}\\), and what are the three values of \\( \alpha_{Vertex} \\)?
2. Draw \\( \alpha_{Arrow} \\) as two lines connecting the cells in the ID column of \\(G(Arrow)\\) to those in the ID column of \\(H(Arrow)\\). Similarly, draw \\( \alpha_{Vertex} \\) as connecting lines.
3. Check the source column and target column and make sure that the matches are
natural, i.e. that “alpha-then-source equals source-then-alpha” and similarly for
“target”.

[Previous](https://forum.azimuthproject.org/discussion/2153)
[Next](https://forum.azimuthproject.org/discussion/2155)

![Figure](https://docs.google.com/drawings/d/e/2PACX-1vQMlmR-X-MJgrw2tZrV0Uem9DBtJD3Uv5FKIYETV_Uu-ZpdYeOcyBCbUzkq5ImQyy-qzahHMazxMfBC/pub?w=546&h=100)

\[
\begin{matrix}
G :=
&
&
\begin{array}{c|cc}
Arrow & source & target \\\\
\hline
a & 1 & 2 \\\\
b & 2 & 3
\end{array}
&
&
\begin{array}{c|}
Vertex \\\\
\hline
1 \\\\
2 \\\\
3
\end{array}
\\\\
H :=
&
\begin{array}{c|cc}
Arrow & source & target \\\\
\hline
c & 4 & 5 \\\\
d & 4 & 5 \\\\
e & 5 & 5
\end{array}
&
&
\begin{array}{c|}
Vertex \\\\
\hline
4 \\\\
5
\end{array}
&
\end{matrix}
\]