In **Example 3.69**, we discussed an adjunction between functors \\( - \times B \\) and \\( (−)^B \\).
But we only said how these functors worked on objects:
for any set \\(X\\), they return sets \\( X \times B \\) and \\(X^B\\) respectively.

1. Given a morphism \\(f : X \rightarrow Y\\), what morphism should \\( - \times B : X \times B \rightarrow Y \times B \\)
return?
2. Given a morphism \\(f : X \rightarrow Y\\), what morphism should \\( (−)^B : X^B \rightarrow Y^B \\) return?
3. Consider the function \\(+ : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \\), which sends \\( (a, b) \mapsto a + b \\). Currying \\(+\\), we get a certain function \\(p : \mathbb{N} → \mathbb{N}^\mathbb{N} \\). What is \\(p(3)\\)?

[Previous](https://forum.azimuthproject.org/discussion/2155)
[Next](https://forum.azimuthproject.org/discussion/2157)