Let \\( (P, \le) \\) be a preorder.
Show that \\( z \in P \\) is a terminal object if and only if it is maximal:
that is, if and only if for all \\(c \in P\\) we have \\(c \le z\\).

[Previous](https://forum.azimuthproject.org/discussion/2158)
[Next](https://forum.azimuthproject.org/discussion/2160)