These may not be pretty, and odd numbered diagrams require an \\(id\\) morphism, but here are some examples:


A commuting "line" (aka a morphism)

`X \overset{f}{\rightarrow}Y`
$$
X \overset{f}{\rightarrow}Y
$$

A commuting "triangle"

`\begin{matrix}
X & \overset{f}{\rightarrow } &Y \\
id_x \downarrow & & \downarrow h\\
X &\underset{g}{\rightarrow} &Z
\end{matrix}`
$$
\begin{matrix}
X & \overset{f}{\rightarrow } &Y \\
id_x \downarrow & & \downarrow h\\
X &\underset{g}{\rightarrow} &Z
\end{matrix}
$$

A commuting square

`\begin{matrix}
X & \overset{f}{\rightarrow } &W \\
e \downarrow & & \downarrow h\\
Y &\underset{g}{\rightarrow} &Z
\end{matrix}`
$$
\begin{matrix}
X & \overset{f}{\rightarrow } &W \\
e \downarrow & & \downarrow h\\
Y &\underset{g}{\rightarrow} &Z
\end{matrix}
$$

A commuting "pentagon"

`\begin{matrix}
X & \overset{f}{\rightarrow }& S & \overset{l}{\rightarrow } &W \\
id_x \downarrow & & & & \downarrow h\\
X &\underset{g}{\rightarrow}&T&\underset{k}{\rightarrow} &Z
\end{matrix}`
$$
\begin{matrix}
X & \overset{f}{\rightarrow }& S & \overset{l}{\rightarrow } &W \\
id_x \downarrow & & & & \downarrow h\\
X &\underset{g}{\rightarrow}&T&\underset{k}{\rightarrow} &Z
\end{matrix}
$$

A commuting "hexagon"

`\begin{matrix}
X & \overset{f}{\rightarrow }& S & \overset{l}{\rightarrow } &W \\
e \downarrow & & & & \downarrow h\\
Y &\underset{g}{\rightarrow}&T&\underset{k}{\rightarrow} &Z
\end{matrix}`
$$
\begin{matrix}
X & \overset{f}{\rightarrow }& S & \overset{l}{\rightarrow } &W \\
e \downarrow & & & & \downarrow h\\
Y &\underset{g}{\rightarrow}&T&\underset{k}{\rightarrow} &Z
\end{matrix}
$$


A commuting "\\((2n+1)-\\)gon"

`\begin{matrix}
X & \overset{f}{\rightarrow }& S & \overset{l}{\rightarrow }&R&\overset{\cdots}{\rightarrow }&W \\
id_x \downarrow & & & & & & \downarrow h\\
X &\underset{g}{\rightarrow}&T&\underset{k}{\rightarrow}&Q&\underset{\cdots}{\rightarrow} &Z
\end{matrix}`
$$
\begin{matrix}
X & \overset{f}{\rightarrow }& S & \overset{l}{\rightarrow }&R&\overset{\cdots}{\rightarrow }&W \\
id_x \downarrow & & & & & & \downarrow h\\
X &\underset{g}{\rightarrow}&T&\underset{k}{\rightarrow}&Q&\underset{\cdots}{\rightarrow} &Z
\end{matrix}
$$

A commuting "\\((2n)-\\)gon"

`\begin{matrix}
X & \overset{f}{\rightarrow }& S & \overset{l}{\rightarrow }&R&\overset{\cdots}{\rightarrow }&W \\
e \downarrow & & & & & & \downarrow h\\
Y &\underset{g}{\rightarrow}&T&\underset{k}{\rightarrow}&Q&\underset{\cdots}{\rightarrow} &Z
\end{matrix}`
$$
\begin{matrix}
X & \overset{f}{\rightarrow }& S & \overset{l}{\rightarrow }&R&\overset{\cdots}{\rightarrow }&W \\
e \downarrow & & & & & & \downarrow h\\
Y &\underset{g}{\rightarrow}&T&\underset{k}{\rightarrow}&Q&\underset{\cdots}{\rightarrow} &Z
\end{matrix}
$$