Show that a \\(\mathcal{V}\\)-profunctor (Definition 4.8) is the same as a function
\\( \Phi : Ob(\mathcal{X}) \times Ob(\mathcal{Y}) \rightarrow \mathcal{V} \\)
such that for any \\(x, x' \in \mathcal{X} \text{ and } y, y' \in \mathcal{Y} \\)
the following inequality holds in \\(\mathcal{V}\\):
\[ \mathcal{X}(x' , x) \otimes \Phi(x, y) \otimes \mathcal{Y}(y, y' ) \le \Phi(x' , y' ) \]

[Previous](https://forum.azimuthproject.org/discussion/2229)
[Next](https://forum.azimuthproject.org/discussion/2232)

**Definition 4.8**

Let \\(\mathcal{V} = (V, \le, I, \otimes) \\) be a (unital commutative) quantale,
and let \\(\mathcal{X}\\) and \\(\mathcal{Y}\\) be \\(\mathcal{V}\\)-categories.
A \\(\mathcal{V} \\)-_profunctor_ from \\(\mathcal{X} \\) to \\(\mathcal{Y} \\),
denoted \\(\Phi : \mathcal{X} \nrightarrow \mathcal{Y}\\), is a \\(\mathcal{V}\\)-functor
\[ \Phi : \mathcal{X}^{op} \times \mathcal{Y} \rightarrow \mathcal{V} \]