Calculate \$$M_X^4 * M_\Phi * M_Y^3 \$$, remembering to do matrix multiplication
according to the (min, +)-formula for matrix multiplication in the quantale **Cost**;
see [Eq. (2.97)](https://forum.azimuthproject.org/discussion/2118).

Your answer should agree with what you got in [Exercise 4.15](https://forum.azimuthproject.org/discussion/2234); does it?

[Previous](https://forum.azimuthproject.org/discussion/2234)
[Next](https://forum.azimuthproject.org/discussion/2243)

$\begin{matrix} \begin{array}{c | c c c c} M_X & A & B & C & D \\\\ \hline A & 0 & \infty & 3 & \infty \\\\ B & 2 & 0 & \infty & 5 \\\\ C & \infty & 3 & 0 & \infty \\\\ D & \infty & \infty & 4 & 0 \end{array} & \begin{array}{c | c c c c} M_{\Phi} & x & y & z \\\\ \hline A & \infty & \infty & \infty \\\\ B & 11 & \infty & \infty \\\\ C & \infty & \infty & \infty \\\\ D & \infty & 9 & \infty \end{array} & \begin{array}{c | c c c c} M_Y & x & y & z \\\\ \hline x & 0 & 4 & 3 \\\\ y & 3 & 0 & \infty \\\\ z & \infty & 4 & 0 \end{array} \end{matrix}$